Answer:
P₁ = 2.215 10⁷ Pa, F₁ = 4.3 106 N,
Explanation:
This problem of fluid mechanics let's start with the continuity equation to find the speed of water output
Q = A v
v = Q / A
The area of a circle is
A = π r² = π d² / 4
Let's look at the speeds at each point
v₁ = Q / A₁ = Q 4 /π d₁²
v₁ = 10 4 /π 0.5²
v₁ = 50.93 m / s
v₂ = Q / A₂
v₂ = 10 4 /π 0.25²
v₂ = 203.72 m / s
Now we can use Bernoulli's equation in the colon
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Since the tube is horizontal y₁ = y₂. The output pressure is P₂ = Patm = 1.013 10⁵ Pa, let's clear
P₁ = P2 + ½ rho (v₂² - v₁²)
P₁ = 1.013 10⁵ + ½ 1000 (203.72² - 50.93²)
P₁ = 1.013 10⁵ + 2.205 10⁷
P₁ = 2.215 10⁷ Pa
la definicion de presion es
P₁ = F₁/A₁
F₁ = P₁ A₁
F₁ = 2.215 10⁷ pi d₁²/4
F₁ = 2.215 10⁷ pi 0.5²/4
F₁ = 4.3 106 N
<em>A clamp-type measuring instrument operates on the principle of; </em>
A. induction
Answer: Pieces of minerals, rocks, plant and animal remains.
Explanation: Pieces of minerals, rocks, plant and animal remains. whether or not patterns cause flow rates of rivers to vary. sand settles from faster-moving water;smaller costs of silt and clay that form up mud settle from slower moving water.
If the rod is in rotational equilibrium, then the net torques acting on it is zero:
∑ τ = 0
Let's give the system a counterclockwise orientation, so that forces that would cause the rod to rotate counterclockwise act in the positive direction. Compute the magnitudes of each torque:
• at the left end,
τ = + (50 N) (2.0 m) = 100 N•m
• at the right end,
τ = - (200 N) (5.0 m) = - 1000 N•m
• at a point a distance d to the right of the pivot point,
τ = + (300 N) d
Then
∑ τ = 100 N•m - 1000 N•m + (300 N) d = 0
⇒ (300 N) d = 1100 N•m
⇒ d ≈ 3.7 m