Answer:
25J
Explanation:
Given parameters:
Mass of the dog = 10kg
Speed of the dog = 5m/s
Unknown:
The minimum energy required to stop the dog = ?
Solution:
The dog is moving with a kinetic energy and to stop the dog, an equal amount of kinetic energy generated must be applied to the dog.
To find the kinetic energy;
K.E =
m v²
m is the mass
v is the velocity
Now insert the parameters and solve;
K.E =
x 10 x 5 = 25J
Answer:
v = 15.65 m/s
Explanation:
We use conservation of mechanical energy between initial (i) and final (f) states:
Pi + KEi = Pf + KEf
At the top of the cave at the instant the bat starts to fall, there is only potential energy since the bat's velocity is zero.
Pi = m g h = 600 J
and the KEi = 0 J (no velocity)
Knowing the height of the cave's roof (12.8 m) , we can find the mass of the bat:
m = 600 J / (g 12.5) = 4.9 kg
Using conservation of mechanical energy, the final state is:
Pf + KEf = 600 J
with Pf = 0 (just touching the ground)
KEf= 1/2 4.9 (v^2)
and we solve for the velocity:
600 J = 0 + 1/2 4.9 (v^2)
v^2 = 600 * 2 / 4.9 = 244.9
v = 15.65 m/s
Answer:
Explanation:
graph would be a straight line from (0, 0) to (400, 8)
Plot points are
PE = mgh
50(0) = 0 J
50(2) = 100 J
50(4) = 200 J
50(6) = 300 J
50(8) = 400 J
At the entrance of most beaches, there is a bulletin board with notices about water conditions: maybe a faded sign warning about rip currents and a list of this week's tide tables. Most people pass them by without a second thought, but if you want to enter the ocean, it is important to know its movements, whether to avoid being caught in a riptide or to figure out when the waves will be at their best.
Hope this helps
A group of cells together