Answer:
The coefficient of kinetic friction between the sled and the snow is 0.0134
Explanation:
Given that:
M = mass of person = 52 kg
m = mass of sled = 15.2 kg
U = initial velocity of person = 3.63 m/s
u = initial velocity of sled = 0 m/s
After collision, the person and the sled would move with the same velocity V.
a) According to law of momentum conservation:
Total momentum before collision = Total momentum after collision
MU + mu = (M + m)V

Substituting values:

The velocity of the sled and person as they move away is 2.81 m/s
b) acceleration due to gravity (g) = 9.8 m/s²
d = 30 m
Using the formula:

The coefficient of kinetic friction between the sled and the snow is 0.0134
To contrast inner and outer planets we will start with the climate of the planets and then move on to there lighting. To start the planets closet to the sun, mercury, venus, earth and mars, are all hot compared to the further one, jupiter, saturn, uranus, neptune. This distance also makes the farthe away planets darker than the ones closer. Now to compare all the planets vary from either gass or solid, rocky or icy. All of them spin around the sun and all have objects spinning around them, moons.
Answer
10
Explanation:
goes up by 10 each time 10 to 20 to 30
Answer:
<em>600N(downwards)</em>
Explanations
<em>600N(downwards)</em>
Mas of the person = 60kg
Acceleration due to gravity = -10m/s²
To get the earths pull on the person, we will use the Newton second law of motion;
Force = mass * acceleration;
Force = 60 * -10
Force- -600N
<em>Hence the earth gravitational pull on the person is 600N(downwards). It is downwards due to the negative sign.</em>
<em></em>
A) 
The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):
(1)
where k is the spring constant.
The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:
(2)
where x is the displacement, m the mass, and v the speed.
We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

Using (2) we can rewrite this as

And using (1), we find

Substituting
into the last equation, we find the value of x:

B) 
In this case, the kinetic energy is 1/10 of the total energy:

Since we have

we can write

And so we find:
