1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Grace [21]
3 years ago
9

Hitunglah nilai x ( jika ada ) yang memenuhi persamaan nilai mutlak berikut . Jika tidak ada nilai x yang memenuhi , berikan ala

sanmu.
a. |4-3x|= |-4|
b. 2|3x-8|= 10C. 2x+|3x-8|= -4D. 5 |2x-3|=2|3-5x|
e. 2x + |8-3x| = |x-4|
Mathematics
2 answers:
Julli [10]3 years ago
5 0

(a). The solutions are 0 and ⁸/₃.

(b). The solutions are 1 and ¹³/₃.

(c). The equation has no solution.

(d). The only solution is ²¹/₂₀.

(e). The equation has no solution.

<h3>Further explanation</h3>

These are the problems with the absolute value of a function.

For all real numbers x,

\boxed{ \ |f(x)|=\left \{ {{f(x), for \ f(x) \geq 0} \atop {-f(x), for \ f(x) < 0}} \right. \ }

<u>Problem (a)</u>

|4 – 3x| = |-4|

|4 – 3x| = 4

<u>Case 1</u>

\boxed{ \ 4 - 3x \geq 0 \ } \rightarrow \boxed{ \ 4\geq 3x \ } \rightarrow \boxed{ \ x\leq \frac{4}{3} \ }

For 4 – 3x = 4

Subtract both sides by four.

-3x = 0

Divide both sides by -3.

x = 0

Since \boxed{ \ 0\leq \frac{4}{3} \ }, x = 0 is a solution.

<u>Case 2</u>

\boxed{ \ 4 - 3x < 0 \ } \rightarrow \boxed{ \ 4 < 3x \ } \rightarrow \boxed{ \ x > \frac{4}{3} \ }

For -(4 – 3x) = 4

-4 + 3x = 4

Add both sides by four.

3x = 8

Divide both sides by three.

x = \frac{8}{3}

Since \boxed{ \ \frac{8}{3} > \frac{4}{3} \ }, \boxed{ \ x = \frac{8}{3} \ } is a solution.

Hence, the solutions are \boxed{ \ 0 \ and \ \frac{8}{3} \ }  

————————

<u>Problem (b)</u>

2|3x - 8| = 10

Divide both sides by two.

|3x - 8| = 5  

<u>Case 1</u>

\boxed{ \ 3x - 8 \geq 0 \ } \rightarrow \boxed{ \ 3x\geq 8 \ } \rightarrow \boxed{ \ x\geq \frac{8}{3} \ }

For 3x - 8 = 5

Add both sides by eight.

3x = 13

Divide both sides by three.

x = \frac{13}{3}

Since \boxed{ \ \frac{13}{3} \geq \frac{4}{3} \ }, \boxed{ \ x = \frac{13}{3} \ } is a solution.

<u>Case 2</u>

\boxed{ \ 3x - 8 < 0 \ } \rightarrow \boxed{ \ 3x < 8 \ } \rightarrow \boxed{ \ x < \frac{8}{3} \ }

For -(3x – 8) = 5

-3x + 8 = 5

Subtract both sides by eight.

-3x = -3

Divide both sides by -3.

x = 1  

Since \boxed{ \ 1 < \frac{8}{3} \ }, \boxed{ \ x = 1 \ } is a solution.

Hence, the solutions are \boxed{ \ 1 \ and \ \frac{13}{3} \ }  

————————

<u>Problem (c)</u>

2x + |3x - 8| = -4

Subtracting both sides by 2x.

|3x - 8| = -2x – 4

<u>Case 1</u>

\boxed{ \ 3x - 8 \geq 0 \ } \rightarrow \boxed{ \ 3x\geq 8 \ } \rightarrow \boxed{ \ x\geq \frac{8}{3} \ }

For 3x – 8 = -2x – 4

3x + 2x = 8 – 4

5x = 4

x = \frac{4}{5}

Since \boxed{ \ \frac{4}{5} \ngeq \frac{8}{3} \ }, \boxed{ \ x = \frac{4}{5} \ } is not a solution.

<u>Case 2</u>

\boxed{ \ 3x - 8 < 0 \ } \rightarrow \boxed{ \ 3x < 8 \ } \rightarrow \boxed{ \ x < \frac{8}{3} \ }

For -(3x - 8) = -2x – 4

-3x + 8 = -2x – 4

2x – 3x = -8 – 4

-x = -12

x = 12

Since \boxed{ \ 12 \nless \frac{8}{3} \ }, \boxed{ \ x = 12 \ } is not a solution.

Hence, the equation has no solution.

————————

<u>Problem (d)</u>

5|2x - 3| = 2|3 - 5x|  

Let’s take the square of both sides. Then,

[5(2x - 3)]² = [2(3 - 5x)]²

(10x – 15)² = (6 – 10x)²

(10x - 15)² - (6 - 10x)² = 0

According to this formula \boxed{ \ a^2 - b^2 = (a + b)(a - b) \ }

[(10x - 15) + (6 - 10x)][(10x - 15) - (6 - 10x)]] = 0

(-9)(20x - 21) = 0

Dividing both sides by -9.

20x - 21 = 0

20x = 21

x = \frac{21}{20}

The only solution is \boxed{ \ \frac{21}{20} \ }

————————

<u>Problem (e)</u>

2x + |8 - 3x| = |x - 4|

We need to separate into four cases since we don’t know whether 8 – 3x and x – 4 are positive or negative.  We cannot square both sides because there is a function of 2x.

<u>Case 1</u>

  • 8 – 3x is positive  (or 8 - 3x > 0)
  • x – 4 is positive  (or x - 4 > 0)

2x + 8 – 3x = x – 4

8 – x = x – 4

-2x = -12

x = 6

Substitute x = 6 into 8 – 3x ⇒ 8 – 3(6) < 0, it doesn’t work, even though when we substitute x = 6 into x - 4 it does work.

<u>Case 2</u>

  • 8 – 3x is positive  (or 8 - 3x > 0)
  • x – 4 is negative  (or x - 4 < 0)

2x + 8 – 3x = -(x – 4)

8 – x = -x + 4

x – x =  = 4 - 8

It cannot be determined.

<u>Case 3</u>

  • 8 – 3x is negative (or 8  - 3x < 0)
  • x – 4 is positive. (or x - 4 > 0)

2x + (-(8 – 3x)) = x – 4

2x – 8 + 3x = x - 4

5x – x = 8 – 4

4x = 4

x = 1

Substitute x = 1 into 8 - 3x, \boxed{ \ 8 - 3(1) \nless 0 \ }, it doesn’t work. Likewise, when we substitute x = 1 into x – 4, \boxed{ \ 1 - 4 \not> 0 \ }

<u>Case 4</u>

  • 8 – 3x is negative (or 8 - 3x < 0)
  • x – 4 is negative (or x - 4 < 0)

2x + (-(8 – 3x)) = -(x – 4)

2x – 8 + 3x = -x + 4

5x + x = 8 – 4

6x = 4

\boxed{ \ x=\frac{4}{6} \rightarrow x = \frac{2}{3} \ }

Substitute x = \frac{2}{3} \ into \ 8-3x, \boxed{ \ 8 - 3 \bigg(\frac{2}{3}\bigg) \not< 0 \ }, it doesn’t work. Even though when we substitute x = \frac{2}{3} \ into \ x-4, \boxed{ \ \bigg(\frac{2}{3}\bigg) - 4 < 0 \ } it does work.

Hence, the equation has no solution.

<h3>Learn more</h3>
  1. The inverse of a function brainly.com/question/3225044
  2. The piecewise-defined functions brainly.com/question/9590016
  3. The composite function brainly.com/question/1691598

Keywords: hitunglah nilai x, the equation, absolute  value of the function, has no solution, case, the only solution

fgiga [73]3 years ago
4 0

The solutions are as follows:

(a): \fbox{\begin\\\ \math x=0\ \text{and}\ x=\frac{8}{3}\\\end{minispace}}  

(b): \fbox{\begin\\\ \math x=1\ \text{and}\ x=\frac{13}{3}\\\end{minispace}}

(c): \fbox{\begin\\\ No solution\\\end{minispace}}

(d): \fbox{\begin\\\ \math x=\frac{21}{20}\\\end{minispace}}

(e): \fbox{\begin\\\ No solution\\\end{minispace}}

Further explanation:

The problem is based on the concept of modulus function.

Modulus function is defined as a function which always gives a positive output for all real value of x.

Part (a):

The equation in part (a) is as follows:

|4-3x|=|-4|

For the above equation two cases are formed.  

Case 1:  (x>\frac{4}{3})\rightarrow|4-3x|=-(4-3x).  

\begin{aligned}-(4-3x)&=4\\-4+3x&=4\\3x&=8\\x&=\frac{8}{3}\end{aligned}  

This implies that if x>\dfrac{4}{3} then x=\frac{8}{3}.  

Case 2:

(x.

\begin{aligned}(4-3x)&=4\\-3x&=4-4\\-3x&=0\\x&=0\end{aligned}  

This implies that if x then x=0.  

Part (b):

The equation in part (b) is as follows:

2|3x-8|=10

Further solve the above equation.

\begin{aligned}2|3x-8|&=10\\|3x=8|&=\frac{10}{2}\\|3x-8|&=5\end{aligned}

For the above equation two cases are formed.

Case 1:  (x>\frac{8}{3})\rightarrow|3x-8|=3x-8.

\begin{aligned}3x-8&=5\\3x&=5+8\\3x&=13\\x&=\frac{13}{3}\end{aligned}

This implies that if x>\frac{8}{3} then x=\frac{13}{3}.

Case 2: (x.

\begin{aligned}-(3x-8)&=5\\-3x+8&=5\\-3x&=5-8\\-3x&=-3\\x&=1\end{aligned}  

This implies that if x then x=1.

Part (c):  

The equation in part (c) is as follows:  

2x+|3x-8|=-4  

For the above equation two cases are formed.  

Case 1: (x>\frac{8}{3})\rightarrow|3x-8|=3x-8.  

\begin{aligned}2x+3x-8&=-4\\5x&=-4+8\\5x&=4\\x&=\frac{4}{5}\end{aligned}  

The value of x cannot be equal to \frac{4}{5} because as assumed above x>\frac{8}{3} and \frac{4}{5} so due to contradiction the solution x=\frac{4}{5} is discarded.  

Case 2: (x.  

\begin{aligned}2x-(3x-8)&=-4\\2x-3x+8&=-4\\-x&=-12\\x&=12\end{aligned}  

The value of x cannot be equal to 12 because as assumed above x and (12)>\farc{8}{3} so due to contradiction the solution x=12 is discarded.

Part (d):  

The equation in part (d) is as follows:  

5|2x-3|=2|3-5x|  

Square both the side in the above equation.  

\begin{aligned}(5|2x-3|)2&=(2|3-5x|)2\\(10x-15)2&=(2(3-5x))2\\(10x-15)2&=(6-10x)2\\(10x-15)2-(6-10x)2&=0\\(10x-15+6-10x)(10x-15-6+10x)&=0\\(-9)(20x-21)&=0\\(20x-21)&=0\\20x&=21\\x&=\frac{21}{20}\end{aligned}  

Part (e):  

The equation in part (e) is as follows:  

2x+|8-3x|=|x-4| (4)

For the above equation four cases are formed.

Case 1: (x>4 \rightarrow |x-4|=x-4) and (x.  

\begin{aligned}2x+8-3x&=x-4\\-x+8&=x-4\\2x&=12\\x&=6\end{aligned}  

The value of x cannot be equal to 6 because as assumed above x so, due to contradiction the solution x=6 is discarded.  

Case 2: x and x.  

\begin{aligned}2x+8-3x&=-(x-4)\\-x+8&=-x+4\\-x+x&=-4\\0&=-4(\text {false})\end{aligned}  

Case 2 leads to a false statement so, no solution for this case.  

Case 3: x>4\rightarrow|x-4|=x-4 and x>\frac{8}{3}\rightarrow|8-3x|=-(8-3x).  

\begin{aligned}2x-(8-3x)&=x-4\\2x-8+3x&=x-4\\4x&=4\\x&=1\end{aligned}  

The value of x cannot be equal to 1 because as assumed above x>4 so, due to contradiction the solution x=1 is discarded.  

Case 4: x and (x>\frac{8}{3})\rightarrow|8-3x|=-(8-3x).  

\begin{aligned}2x-(8-3x)&=-(x-4)\\2x-8+3x&=-x+4\\6x&=12\\x&=2\end{aligned}  

The value of x cannot be equal to 2 because as assumed above x>\dfrac{8}{3} so, due to contradiction the solution x=2 is discarded.  

Learn more:  

1. A problem on composite function  

brainly.com/question/2723982  

2. A problem to find radius and center of circle  

brainly.com/question/9510228  

Answer details:

Grade: High school

Subject: Mathematics  

Chapter: Functions

Keywords: Functions, modulus function, absolute function, domain, range, intervals, equation, graph, curve, relation, |4-3x|=|-4|, 2x+|8-3x|=|x-4|, 5|2x-3|=2|3-5x|, 2x+|3x-8|=-4, solutions, Hitunglah nilai, memenuhi persmaan.

You might be interested in
A jewelry store received a package of rings that is 16 inches long, 10 inches wide, and 12 inches high. The package contains 1 -
masya89 [10]
About 1920, just find the volume by multiplying length times width times height
and divide that by the 1-inch cubes. hope this helps
8 0
3 years ago
What Is The Rate Of Change In This Function?
Marrrta [24]

Answer:The answer would be 35 miles per day.

Step-by-step explanation:

We know the x axis is in days and the y axis is the distance in miles. There are only three answers left. We can also cross out 50 miles per day since the  rate of change is less then 50. The answer is 35 miles per day because if the rate of change were to be 25 in 4 days the distance would be 100 miles, while is you look at where the point is at it is closer to 150.

6 0
3 years ago
190 + 200 its IMPOSSIBLE
nirvana33 [79]

Answer: 390

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Please help me asap i will mark branlist please explain
Ulleksa [173]
It would be b because a^2+b^2=c^2 so in this case 5^2+8^2=c^2
6 0
3 years ago
The angle are supplementary.find the missing angle measure
olga55 [171]
U had to take a pic of the work so we could see it
6 0
3 years ago
Read 2 more answers
Other questions:
  • 27 cups in blank pints
    9·1 answer
  • Simplify the exponential expression:<br> (2x^2y^4)^3
    6·2 answers
  • In 1-3 sentences, explain how we know that the the volume of a pyramid is V=1/3Bh
    6·1 answer
  • A school custodian discovered a leak in a water pipe. The custodian found that 2,432 fluid ounces of water had leaked out. How m
    7·1 answer
  • 39 out of 60 is equivalent to what decimal and percent?
    10·1 answer
  • Help, please I can't answer it
    14·1 answer
  • Jacob earns $19.00 for walking 4 dogs. How much money would he earn for walking 7 dogs? Walking 8 dogs? 1 dog?
    9·1 answer
  • One flight of stairs has a slope of 3/4 , while another flight of stairs contains points (-2,3) and (14, 15). Would these be par
    10·1 answer
  • A class votes for their class President Kennedy receives 21 votes which is 6% of the vote what is the total number of students w
    13·2 answers
  • A university class has 22 students: 3 are nursing majors, 9 are psychology majors, and 10 are business majors. (Each student has
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!