Answer:
ε = 6.617 V
Explanation:
We are given;
Number of turns; N = 40 turns
Diameter;D = 18cm = 0.18m
magnetic field; B = 0.65 T
Time;t = 0.1 s
The formula for the induced electric field(E.M.F) is given by;
ε = |-NAB/t|
A is area
ε is induced electric field
While N,B and t remain as earlier described.
Area = π(d²/4) = π(0.18²/4) = 0.02545
Thus;
ε = |-40 × 0.02545 × 0.65/0.1|
ε = 6.617 V
(we ignore the negative sign because we have to take the absolute value)
Answer : The correct option is, (c) 
Explanation :
First we have to calculate the energy or heat.
Formula used :

where,
E = energy (in joules)
V = voltage (in volt)
I = current (in ampere)
t = time (in seconds)
Now put all the given values in the above formula, we get:


Now we have to calculate the heat capacity of the calorimeter.
Formula used :

where,
C = heat capacity of the calorimeter
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get:


Therefore, the heat capacity of the calorimeter is, 
From all the options listed, as seen in the picture attached, the example which best represents the use of creativity in a scientific inquiry is option D. i.e. <span>developing a new way to extract a particular protein from tissue samples. Figuring out new methods and implementing them is what is called as creativity in scientific inquiry.</span>
Answer: 
Explanation:
Given
Wavelength of light 
Screen is
away
Distance between two adjacent bright fringe is 
When same experiment done in water, wavelength reduce to 
So, the distance between the two adjacent bright fringe is 
Keeping other factor same, distance becomes

If you search that click the first link ;)