Answer:
The magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.
Explanation:
The initial centripetal acceleration, a of the race-car around the circular track of radius , R with a linear speed v is a = v²/R.
When the linear speed of the race-car increases to v' = 4v, the centripetal acceleration a' becomes a' = v'²/R = (4v)²/R = 16v²/R.
So the centripetal acceleration, a' = 16v²/R.
To know how much the magnitude of the car's centripetal acceleration changes, we take the ratio a'/a = 16v²/R ÷ v²/R = 16
a'/a = 16
a' = 16a.
So the magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.
Answer:
0.3817 N
Explanation:
Remark
One thing is certain: the ball has a mass of 101 grams wherever it is in the universe. That is not true of the force. The force on the moon is a whole lot less than it is on earth, and maybe planet x as well.
Givens
m = 101 g
vi = 0 That's what at rest means.
t = 2.91 s
d = 16 m
F= ?
Formulas
d = vi*t + 1/2*a * t^2
Force = m * a
Solution
16 = 0 + 1/2 a * 2.91^2
16 = 4.234 a Divide by 4.234
16/4.234 = a
a = 3.779
F = m * a
a = 3.779
m = 101 g = 1 kg / 1000 grams
m = 0.101 kg
F = 0.101 * 3.779
F = 0.3817N
Mass of object/source
Gravity
Fg=mg
Answer:
∑Fy = 0, because there is no movement, N = m*g*cos (omega)
Explanation:
We can solve this problem with the help of a free body diagram where we show the respective forces in each one of the axes, y & x. The free-body diagram and the equations are in the image attached.
If the product of mass by acceleration is zero, we must clear the normal force of the equation obtained. The acceleration is equal to zero because there is no movement on the Y-axis.
card games
board games
bird watch
write a song
make a game
count stuff
throw a ball with someone
play outside