Answer:
63.36gallons
Explanation:
Given:
Volume of water used for dialysis = 2.4 x 10²L
Solution:
We are to convert from liters to gallons.
The conversion factor is shown below:
1L = 0.264gallons
To convert to litre:
since 1L = 0.264gallons
2.4 x 10²L = (2.4 x 10² x 0.264)gallons; 63.36gallons
It should be 24g of carbon
You have to take the 476 L and divide it by 22.4 because with Molar Volume 1 mol = 22.4L. After you divide it your answer is 21.25.
S and S²⁻ do not have the outer subshell fully filled with electrons.
Explanation:
We look at electronic configurations:
Ca 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² - the outer subshell 4s² is fully-filled with electrons
S 1s² 2s² 2p⁶ 3s² 3p⁴ - the outer subshell 3p⁴ is not fully-filled with electrons
Zn²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s⁰ - here the 4s subshell is higher in energy than 3d subshell so will consider 3d¹⁰ the out subshell which is fully-filled with electrons
S²⁻ 1s² 2s² 2p⁶ 3s² 3p² - the outer subshell 3p² is not fully-filled with electrons
Ca²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ - the outer subshell 3p⁶ is fully-filled with electrons
Learn more about:
electron configurations
brainly.com/question/5524513
brainly.com/question/6991243
#learnwithBrainly
Answer:
0.0010 mol·L⁻¹s⁻¹
Explanation:
Assume the rate law is
rate = k[A][B]²
If you are comparing two rates,
![\dfrac{\text{rate}_{2}}{\text{rate}_{1}} = \dfrac{k_{2}\text{[A]}_2[\text{B]}_{2}^{2}}{k_{1}\text{[A]}_1[\text{B]}_{1}^{2}}= \left (\dfrac{\text{[A]}_{2}}{\text{[A]}_{1}}\right ) \left (\dfrac{\text{[B]}_{2}}{\text{[B]}_{1}}\right )^{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Ctext%7Brate%7D_%7B2%7D%7D%7B%5Ctext%7Brate%7D_%7B1%7D%7D%20%3D%20%5Cdfrac%7Bk_%7B2%7D%5Ctext%7B%5BA%5D%7D_2%5B%5Ctext%7BB%5D%7D_%7B2%7D%5E%7B2%7D%7D%7Bk_%7B1%7D%5Ctext%7B%5BA%5D%7D_1%5B%5Ctext%7BB%5D%7D_%7B1%7D%5E%7B2%7D%7D%3D%20%5Cleft%20%28%5Cdfrac%7B%5Ctext%7B%5BA%5D%7D_%7B2%7D%7D%7B%5Ctext%7B%5BA%5D%7D_%7B1%7D%7D%5Cright%20%29%20%5Cleft%20%28%5Cdfrac%7B%5Ctext%7B%5BB%5D%7D_%7B2%7D%7D%7B%5Ctext%7B%5BB%5D%7D_%7B1%7D%7D%5Cright%20%29%5E%7B2%7D)
You are cutting each concentration in half, so
![\dfrac{\text{[A]}_{2}}{\text{[A]}_{1}} = \dfrac{1}{2}\text{ and }\dfrac{\text{[B]}_{2}}{\text{[B]}_{1}}= \dfrac{1}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Ctext%7B%5BA%5D%7D_%7B2%7D%7D%7B%5Ctext%7B%5BA%5D%7D_%7B1%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%5Ctext%7B%20and%20%7D%5Cdfrac%7B%5Ctext%7B%5BB%5D%7D_%7B2%7D%7D%7B%5Ctext%7B%5BB%5D%7D_%7B1%7D%7D%3D%20%5Cdfrac%7B1%7D%7B2%7D)
Then,
