He set up his periodic table by the atomic mass
Q = mcΔθ
67.5 = m x 0.45 x (28.5 - 21.5)
M = 67.5 / 3.15
= 21.4 g
Methane gas and chlorine gas react to form hydrogen chloride gas and carbon tetrachloride gas. What volume of hydrogen chloride would be produced by this reaction if 3.16 L of chlorine were consumed at STP.
Be sure your answer has the correct number of significant digits.
Answer: Thus volume of carbon tetrachloride that would be produced is 0.788 L
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 3.16 L
n = number of moles = ?
R = gas constant =
T =temperature =



According to stoichiometry:
4 moles of chlorine produces = 1 mole of carbon tetrachloride
Thus 0.141 moles of methane produces =
moles of carbon tetrachloride
volume of carbon tetrachloride =
Thus volume of carbon tetrachloride that would be produced is 0.788 L
The answer is 3. As 5 * 3 = 15.
Is there any other equations I may be able to help you with? :)
Answer:
A carbon–oxygen bond is a polar convalescent bond between carbon and oxygen. Oxygen has 6 valence electrons and prefers to either share two electrons in bonding with carbon, leaving the 4 nonbinding electrons in 2 lone pairs :O: or to share two pairs of electrons to form the carbon functional group.