C. 1.0 M Al2O3 would be the best answer
Answer:
12.32 L.
Explanation:
The following data were obtained from the question:
Mass of CH4 = 8.80 g
Volume of CH4 =?
Next, we shall determine the number of mole in 8.80 g of CH4. This can be obtained as follow:
Mass of CH4 = 8.80 g
Molar mass of CH4 = 12 + (1×4) = 12 + 4 = 16 g/mol
Mole of CH4 =?
Mole = mass/Molar mass
Mole of CH4 = 8.80 / 16
Mole of CH4 = 0.55 mole.
Finally, we shall determine the volume of the gas at stp as illustrated below:
1 mole of a gas occupies 22.4 L at stp.
Therefore, 0.55 mole of CH4 will occupy = 0.55 × 22.4 = 12.32 L.
Thus, 8.80 g of CH4 occupies 12.32 L at STP.
Answer: A chemical process must occur and then changes between the state of the reactants and the state of the products can be determined
Explanation: Enthalpy represents the sum of the energy of the system with the product of the pressure and volume of that system. As a thermodynamic property, it expresses the ability to release heat from the system. In fact, enthalpy tells us how much heat and work has changed during the chemical reaction under constant pressure. When measuring, measurements of the difference in enthalpy between the two states of the system is performed, before and after the chemical reaction, since total enthalpy can not be measured. This measurement of the enthalpy change can tell us, for example, whether the heat was released from the system during the reaction, or the system absorbed the heat.
Answer:
I think its C but if its not try A then
Explanation:
The balanced chemical reaction is:
N2 + 3H2 = 2NH3
We are given the amount of ammonia formed
from the reaction. This is where we start our calculations.
0.575 g NH3 (1 mol NH3 / 17.03 g NH3) (3 mol
H2 / 2 mol NH3) ( 2.02 g H2 / 1 mol H2) = 0.10 g H2