Answer:
There are 220 ways by which the medals can be awarded to three of the 15 gymnast, if exactly one of the Americans wins a medal
Step-by-step explanation:
From the question, we have;
The number of gymnast in the Olympic women's competition = 15
The number of the gymnast who are Americans = 4
The number of medals awarded = 3 medals
The number of ways hat the medals can be awarded to the three of the gymnast if exactly one of the Americans wins a medal is given as follows;
The number of ways one of the medals can be won by one of the four Americans = ₄C₁ = 4 ways
The number of ways the other two medals can be won by the remaining 11 gymnast = ₁₁C₂ = 55 ways
Therefore, the total number of ways, 'N', the medals can be awarded to three of the 15 gymnast, if exactly one of the Americans wins a medal is given as follows;
N = ₄C₁ × ₁₁C₂
∴ N = 4 × 55 = 220
Answer:
To do this question, we must first convert Pi to a decimal form, as shown below:
Pi = 3.14
So then our equation becomes:
3.14 x 36 - 16
We still need to remember PEMDAS.
Parentheses, Exponents, Multiplication, Division, Addition and Subtraction.
So according to PEMDAS, we need to do 3.14 x 36, which equals 113.04
Now we have to do:
113.04 - 16 = 97.04
Our answer is 97.04
<u><em>Hope this helps - genius423</em></u>
The answer is about 432.178
Answer:
2100
Step-by-step explanation:
In how many ways can a group of 10 people be divided into three groups consisting of 2,3, and 5 people?
First, you need to choose 4 people to fill the first group.
The number of ways is (104) which equals to 210.
Then, pick 3 more people out of the remaining 6 to be in the second group. And then, pick 3 more out of the remaining 3.
However, we need to divide it by 2, since we don’t really care on the order of selection of group.
(63)(33)/2=10
So, there are 210 x 10 = 2100 ways