Answer: Part A is 2 and 6 Part B is 2
Step-by-step explanation:
Part A: Here is the explanation. So, you started at with the expression 3x^2+8x+4 and when you're are factoring, you have 3x^2+px+pq+4. You can substitute the p and q for 6 and 2. What they did is they replaced 8x with px+qx. To get 8x, p needs to be 6 and q needs to be 2, or the other way around. TIP: The numbers just have to add up to 8 on this one. It doesn't have to be 6 and 2.
Part B: Here is what I got so far... 3x(x+r) is 3x^2+3xr. Also, s(x+r) is sx+sr. The equation becomes, 3x^2+3xr+sx+sr. R can be 2 and s can be 2. Here is my reasoning: The original expression was 3x^2+8x+4. We already have the 3x^2, so now we need to find what the others are by determining what r and s equal. R and s can both be 2 to make four. 2x2 is 4. Let's see if it can make 8. 3xr becomes 6x and sx becomes 2x. 6x+2x is 8x.
Answer:
The difference of the degrees of the polynomials p (x) and q (x) is 1.
Step-by-step explanation:
A polynomial function is made up of two or more algebraic terms, such as p (x), p (x, y) or p (x, y, z) and so on.
The polynomial’s degree is the highest exponent or power of the variable in the polynomial function.
The polynomials provided are:
The degree of polynomial p (x) is:
The degree of polynomial q (x) is:
The difference of the degrees of the polynomials p (x) and q (x) is:
Thus, the difference of the degrees of the polynomials p (x) and q (x) is 1.
Answer:
1.68 hours
Step-by-step explanation: