Answer:
G
Step-by-step explanation:
Answer:
Applied the definition and the limit.
They had the same result, so the function is continuous.
Step-by-step explanation:
At function f(x) is continuous at x = a if:
![\lim_{x \to a} f(x) = f(a)](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20a%7D%20f%28x%29%20%3D%20f%28a%29)
In this question:
![f(x) = x^{2} + 5(x-2)^{7}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20x%5E%7B2%7D%20%2B%205%28x-2%29%5E%7B7%7D)
At x = 3.
![\lim_{x \to 3} x^{2} + 5(x-2)^{7} = 3^{2} + 5(3-2)^{7} = 14](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%203%7D%20x%5E%7B2%7D%20%2B%205%28x-2%29%5E%7B7%7D%20%3D%203%5E%7B2%7D%20%2B%205%283-2%29%5E%7B7%7D%20%3D%2014)
![f(3) = 3^{2} + 5(3-2)^{7} = 14](https://tex.z-dn.net/?f=f%283%29%20%3D%203%5E%7B2%7D%20%2B%205%283-2%29%5E%7B7%7D%20%3D%2014)
Since
, f(x) is continuous at x = 3.
Answer:
1. 17
2. 7
3. -2
4. 18
5. 8
6. 70
Step-by-step explanation:
Square root of 64= 8
Square root cubes of 1,000 = 10
Hope this helps and forgive me if I am wrong