A continuous spectrum contains all the wavelengths
A discontinuous spectrum has strips of specific colors and can be used to identify the elements making it.
hope this helps
Answer:
finding Cepheid variable and measuring their periods.
Explanation:
This method is called finding Cepheid variable and measuring their periods.
Cepheid variable is actually a type of star that has a radial pulsation having a varying brightness and diameter. This change in brightness is very well defined having a period and amplitude.
A potent clear link between the luminosity and pulsation period of a Cepheid variable developed Cepheids as an important determinants of cosmic criteria for scaling galactic and extra galactic distances. Henrietta Swan Leavitt revealed this robust feature of conventional Cepheid in 1908 after observing thousands of variable stars in the Magellanic Clouds. This in fact turn, by making comparisons its established luminosity to its measured brightness, allows one to evaluate the distance to the star.
The refractive index for glycerine is

, while for air it is

.
When the light travels from a medium with greater refractive index to a medium with lower refractive index, there is a critical angle over which there is no refraction, but all the light is reflected. This critical angle is given by:

where n1 and n2 are the refractive indices of the two mediums. If we susbtitute the refractive index of glycerine and air in the formula, we find the critical angle for this case:
In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.
The equation that defines the linear moment is given by

where,
m=Total mass
Mass of Object
Velocity before throwing
Final Velocity
Velocity of Object
Our values are:

Solving to find the final speed, after throwing the object we have

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.
That way during each section the equations should be modified depending on the previous one, let's start:
A) 



B) 



C) 



Therefore the final velocity of astronaut is 3.63m/s
Good morning.
We have that:

, since we have rest in the inicial time.
The acceleration can be found with Newton's Law:

Now we put the acceleratin in the velocity equation:

We want the force, so, let's isolate
F: