The minimum velocity of the Salmon jumping at the given angle is 12.3 m/s.
The given parameters;
- height of the waterfall, h = 0.432 m
- distance of the Salmon from the waterfall, s = 3.17 m
- angle of projection of the Salmon, = 30.8º
The time of motion to fall from 0.432 m is calculated as;

The minimum velocity of the Salmon jumping at the given angle is calculated as;

Thus, the minimum velocity of the Salmon jumping at the given angle is 12.3 m/s.
Learn more here: brainly.com/question/20064545
Answer:
person when the point-light walker is moving
Explanation:
A point light walker is an arrangement of dots that moves in a way that mimics a human walking. This is used in the field of Biological Motion Perception.
Biological motion perception is the science that deals with how our brain perceives motion. In order to understand how the brain perceives motion a point light walker is used.
Answer:
c. is more than that of the fluid.
Explanation:
This problem is based on the conservation of energy and the concept of thermal equilibrium

m= mass
s= specific heat
\DeltaT=change in temperature
let s1= specific heat of solid and s2= specific heat of liquid
then
Heat lost by solid= 
Heat gained by fluid=
Now heat gained = heat lost
therefore,
1000 S_2=800 S_1
S_1=1.25 S_2
so the specific heat of solid is more than that of the fluid.
Remember Newton's second law: F=ma
to get the force in newtons, mass should be in kg and acceleration in m/s^2
conveniently, we don't need to convert units
we just need to multiply the two to get the force
65* 0.3 = 19.5 kg m/s^2 or N
if significant digit is an issue, the least number if sig figs is 1 so the answer would be 20 N