Answer:
The volume of the gas is determined, which will allow you to calculate the temperature.
Explanation:
According to Charles law; the volume of a given mass of an ideal gas is directly proportional to its temperature at constant pressure.
This implies that, when the volume of an ideal gas is measured at constant pressure, the temperature of the ideal gas can be calculated from it according to Charles law.
Hence in the Ideal Gas Law lab, the temperature of an ideal gas is measured by determining the volume of the ideal gas.
Mole percent of O2 = 10% = 0.1 moles
Mole percent of N2 = 10% = 0.1 moles
Mole percent of He = 80% = 0.8 moles
Molar Mass of O2 = (2 x 16) x 0.1 = 3.2
Molar Mass of N2 = (2 x 14) x 0.1 = 2.8
Molar Mass of He = 4 x 0.8 = 3.2
1. Molar Mass of the mixture = 3.2 + 2.8 + 3.2 = 9.2 grams
2. Since at constant volume density is proportional to mass, so the ratio of
mass will be the ratio of density.
Ratio = Molar Mass of the mixture / Molar Mass of O2 = 9.2 / 32 = 0.2875
C.silver
nacl is a compound of na and cl
h2o is a compound of 2h and o
electron is a particle in an atom
The reaction, 2 C4H10 (g) + 13 O2 (g) = 8 CO2 (g) + 5 H2O (g), is the combustion of butane. A combustion reaction involves the reaction of a hydrocarbon with oxygen producing carbon dioxide and water. This reaction is exothermic which means it releases energy in the form of heat. Therefore, as the reaction proceeds,a heat energy is being given off by the reaction. This happens because the total kinetic energy of the reactants is greater than the total kinetic energy of the products. So, the excess energy should be given off somewhere which in this case is released as heat.
Answer:
Q = 87.31cal
Explanation:
Mass = 57.8g
T1 = 17.0°C
T2 = 43.5°C
Specific heat capacity (c) = 0.057cal/g°C
Q = MC∇T
Q = M*C*(T₂ - T₁)
Q = 57.8 * 0.057 * (43.5 - 17.0)
Q = 3.2946 * 26.5
Q = 87.306 cal
Q = 87.31cal