Explanation:
A post-test or a mastery test can be unlocked if the learner who has the of it previously can complete the given tutorial with the test.
After the tutorial with the test, the learner will have to complete everything and if he passes the test with a completed answer then he will see that the Mastery Test has been unlocked. Also after the mastery test is unlocked it can be done again.
Answer:
Acid-base
Explanation:
KOH is a strong base, and NH₄Cl is an acid. They react to form a salt and water.
KOH + NH₄Cl ⟶ NH₃ + KCl + H₂O
base acid salt water
Answer:
a. Sn or Si ⇒ Sn
b. Br or Ga ⇒ Ga
c. Sn or Bi ⇒ similar in size
d. Se or Sn ⇒ Sn
Explanation:
The larger atom has a larger atomic radius. We have to consider how varies the atomic radius for chemical elements in the Periodic Table. In a group (column), the atomic radius increases from top to bottom while in a period (file), it increases from right to left.
a. Sn or Si ⇒ Sn
They are in the <u>same group</u>. Sn is on the top, so it has a larger atomic radius.
b. Br or Ga ⇒ Ga
They are in the <u>same period</u>. Ga is located at the left so it has a larger atomic radius.
c. Sn or Bi ⇒ similar
They are not in the same group neither the same period. Bi is located more at the bottom, so it would be larger than Sn, but Bi is also at the right side, so it would be smaller than Bi. Thus, they have comparable sizes.
d. Se or Sn⇒ Sn
They are not in the same group neither the same period. Se is located at the top and right side compared to Sn, so Sn is the larger atom.
Answer:
0.35 milli moles of ethanol can be theoretically be produced under these conditions.
Explanation:

Moles of glucose =
milli mole
Moles of ADP = 0.35 milli mole
Moles of Pi = 0.35 milli mole
Moles of ATP = 0.70 milli mole
As we can see that ADP and Pi are in limiting amount which means tat they are limiting reagent. So, the moles of ethanol produced will depend upon the moles of ADP and Pi.
According to reaction, 2 moles of ADP gives 2 moles of glucose.
Then 0.35 milli moles of ADp will give :
of ethanol
0.35 milli moles of ethanol can be theoretically be produced under these conditions.
The comparison is best supported by this information is that beryllium has a lower atomic radius than Barium.