There are two big advantages of using molarity to express concentration. The first advantage is that it's easy and convenient to use because the solute may be measured in grams, converted into moles, and mixed with a volume.
The second advantage is that the sum of the molar concentrations is the total molar concentration. This permits calculations of density and ionic strength
Answer:
for one mole of C2H6 there are 7/2 mole of O2 required. so for4. 50 moles you require 4.50 x 7/2 = 15.75 moles of O2.
Explanation:
i hope it's helpful
Answer:
Explanation:
SODIUM ATOM;
SODIUM ATOM IS NEUTRAL
SODIUM ION;
IT IS A CHARGED SPECIE WITH A CHARGE OF +1
SODIUM ATOM:
THE NUMBER OF PROTONS AND ELECTRONS ARE SAME ie:11
SODIUM ION:
NUMBER OF PROTONS AND ELECTRONS ARE NOT SAME ie. ELETRON: 10, PROTONS:11
HOPE IT WILL HELP:)
Answer:
25.7 kJ/mol
Explanation:
There are two heats involved.
heat of solution of NH₄NO₃ + heat from water = 0
q₁ + q₂ = 0
n = moles of NH₄NO₃ = 8.00 g NH₄NO₃ × 1 mol NH₄NO₃/80.0 g NH₄NO₃
∴ n = 0.100 mol NH₄NO₃
q₁ = n * ΔHsoln = 0.100 mol * ΔHsoln
m = mass of solution = 1000.0 g + 8.00 g = 1008.0 g
q₂ = mcΔT = 58.0 g × 4.184 J°C⁻¹ g⁻¹ × ((20.39-21)°C) = -2570.19 J
q₁ + q₂ = 0.100 mol ×ΔHsoln – 2570.19 J = 0
ΔHsoln = +2570.19 J /0.100 mol = +25702 J/mol = +25.7 kJ/mol
I believe the correct response is A. At higher elevations it would take less time to hard boil an egg, because there is less atmospheric pressure.