Answer:
d. 12.3 grams of Al2O3
Explanation:
Based on the reaction:
4Al + 3O2 → 2Al2O3
<em>Where 4 moles of Al reacts in excess of oxygen to produce 2 moles of aluminium oxide.</em>
<em />
To solve this question we must find the moles of Aluminium. With these moles we can find the moles of aluminium oxide using the reaction:
<em>Moles Al -Molar mass: 26.9815g/mol-</em>
6.50g * (1mol / 26.9815g) = 0.241 moles Al
<em>Mass Al₂O₃ -Molar mass: 101.96g/mol-</em>
0.241 moles Al * (2 mol Al2O3 / 4 mol Al) = 0.120 moles Al2O3
0.120 moles Al2O3 * (101.96g / mol) =
12.3g of Al2O3 are produced.
Right answer is:
<h3>d. 12.3 grams of Al2O3
</h3>
Answer: The process by which a particular substance or different substances are transformed to another is called as Chemical Reaction.One reason, in the case of reversible reactions could be that the reaction reached equilibrium before the reaction was complete.Chemical reactions occur when chemical bonds between atoms are formed or broken. The substances that go into a chemical reaction are called the reactants, and the substances produced at the end of the reaction are known as the products.The concentration of reactants decreases as the reaction proceeds and at last their concentration comes to an end. Hence, the reaction stops too. If two reactants are being reacted, then the reactant which is in limited amount will consume first and will result in the termination of reaction.The usual reason is that one (or more) of the reactants gets used up.
Hope that was helpful.Thank you!!!
I think the correct answer from the choices listed above is option D. When a molecular compound melts, they undergo the process of phase change from solid to liquid therefore m<span>olecules arranged in a regular pattern change to an irregular pattern. Hope this answers the question.</span>
Answer:
At equilibrium, reactants predominate.
Explanation:
For every reaction, the equilibrium constant is defined as the ratio between the concentration of products and reactants. Thus, for the reaction N2 (g) + O2 (g) ⇌ 2NO the expression of its equilibrium constant is:
![Keq = \frac{[NO]^{2}}{[O_{2} ][N_{2}]}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BO_%7B2%7D%20%5D%5BN_%7B2%7D%5D%7D)
Since the equilibrium constant is Keq = 4.20x10-31 the concentration of reactants O2 and N2 must be much higher than products to obtain such a small number as 4.20x10-31 at the equilibrium. Hence, at equilibrium reactants predominate.
Answer:Benzene typically undergoes reactions in which the aromatic ring is preserved.B. Benzene typically reacts with electrophiles where an aromatic proton is substituted by the electrophile
Explanation:
The reactions of benzene are such that the aromatic ring is not destroyed. Addition reactions destroy the aromatic ring hence they aren't typical reactions of benzene. Benzene rings are attacked by electrophiles in which reaction a proton is substituted by the electrophile. Alkenes only undergo addition reaction and not electrophilic substitution reaction.