Answer:
C) 2 H₂ + O₂ → 2 H₂O
Explanation:
4 atoms of hydrogen on reactant side
2 atoms of oxygen on reactant side
4 atoms of hydrogen on product side
2 atoms of oxygen on product side
Answer:
A They are incorporated into molecules of sugar.
Explanation:
Photosynthesis is the metabolic process whereby sugar molecules are synthesized by plants in the presence of sunlight (light energy). For this process to occur, carbon dioxide (CO2) and water (H2O) are needed as reactants from external sources. Hence, the photosynthetic equation is as follows:
6CO2 + 6H2O → C6H12O6 + 6O2
According to this question, the carbon atoms in carbon dioxide are incorporated into sugar molecule (glucose). It takes 6 carbon atoms to produce one glucose molecule (C6H12O6). This process involves series of reaction in the light-independent stage of photosynthesis to occur.
Answer:
A. The pressure will increase 4 times. P₂ = 4 P₁
B. The pressure will decrease to half its value. P₂ = 0.5 P₁
C. The pressure will decrease to half its value. P₂ = 0.5 P₁
Explanation:
Initially, we have n₁ moles of a gas that occupy a volume V₁ at temperature T₁ and pressure P₁.
<em>What would happen to the gas pressure inside the cylinder if you do the following?</em>
<em />
<em>Part A: Decrease the volume to one-fourth the original volume while holding the temperature constant. Express your answer in terms of the variable P initial.</em>
V₂ = 0.25 V₁. According to Boyle's law,
P₁ . V₁ = P₂ . V₂
P₁ . V₁ = P₂ . 0.25 V₁
P₁ = P₂ . 0.25
P₂ = 4 P₁
<em>Part B: Reduce the Kelvin temperature to half its original value while holding the volume constant. Express your answer in terms of the variable P initial.</em>
T₂ = 0.5 T₁. According to Gay-Lussac's law,

<em>Part C: Reduce the amount of gas to half while keeping the volume and temperature constant. Express your answer in terms of the variable P initial.</em>
n₂ = 0.5 n₁.
P₁ in terms of the ideal gas equation is:

P₂ in terms of the ideal gas equation is:

There are several ways to give an object potential energy. One can move the object against the force of gravity to increase. One can also stretch an object out or put pressure on it.
Answer:
d. Because those chemicals are easily made when CO2 reacts with water, forming H2CO3 (via carbonic anhydrase