Answer:
<h2>pH = 3.9</h2><h2>pOH = 10.1</h2>
Explanation:
Since
is a weak acid to find the pH of
we use the formula

where
Ka is the acid dissociation constant
c is the concentration
From the question
Ka of
= 1.75 × 10^-5
c = 1.00 × 10-³M
Substitute the values into the above formula and solve for the pH
That's

We have the answer as
<h3>pH = 3.9</h3>
To find the pOH we use the formula
pH + pOH = 14
pOH = 14 - pH
pOH = 14 - 3.9
We have the answer as
<h3>pOH = 10.1</h3>
Hope this helps you
Your answer is B. 6.02 x 1023 grams
2 elections will fill the first energy level
Answer:
decreased by a factor of 10
Explanation:
pH is defined in such a way that;
pH= −log10(H)
Where H represents the concentration of Hydronium or Hydrogen ions
Given that pH is changed from 1 to 2,
By rearranging the above formula , we get 10−pH = H
- if pH=1,H=10−1=0.1M
- if pH=2,H=10−2=0.01M
Therefore, 0.1/0.01 = 10 and 0.1 > 0.01
Hence, the concentration of hydronium ions in the solution is decreased by a factor of 10
The volume of base required to completely neutralize the acid is 3.2 mL of NaOH.
The equation of the reaction is;
2NaOH(aq) + H2SO4(aq) -----> Na2SO4(aq) + 2H2O(l)
From the question;
Concentration of acid CA = 0.426M
Concentration of base CB = 2.658M
Volume of acid VA = 10.00mL
Volume of base VB = ?
Number of moles of acid NA = 1
Number of moles of base NB = 2
Using the relation;
CAVA/CBVB = NA/NB
CAVANB = CBVBNA
VB = CAVANB/CBNA
VB = 0.426M × 10.00mL × 2/ 2.658M × 1
VB = 3.2 mL
Learn more: brainly.com/question/6111443