Answer:
2.8g/cm³
Explanation:
Given parameters:
Mass of cube = 42g
Volume of cube = 15cm³
Unknown:
Density of the cube = ?
Solution:
Density is defined as the mass per unit volume of a substance. It is mathematically expressed as:
Density =
So;
Density =
= 2.8g/cm³
The pH of a solution at 25. 0 °C that contains 2. 95 × 10^-12 m hydronium ions is 13.5.
<h3>What is pH? </h3>
pH is defined as the concentration of the hydrogen bond which is released or gained by the species in the solution which depicts the acidity and basicity of the solution.
<h3>What is pOH? </h3>
pOH is defined as the concentration of the hydronium ion present in solution.
pOH value is inversely proportional to the value of pH.
pH value increases, pOH value decreases and vice versa.
Given,
Total H+ ions = 2.95 ×10^(-12)M
<h3>Calculation of pH</h3>
pH = -log[H+]
By substituting the value of H+ ion in given equation
= log(2.95× 10^(-12) )
= 13.5
Thus we find that the pH of a solution at 25. 0 °C that contains 2. 95 × 10^-12 m hydronium ions is 13.5.
learn more about pH:
brainly.com/question/12942138
#SPJ4
Answer: The fourth material that is added to the blast furnace is HOT AIR which provides OXYGEN for used for combustion of carbon (Coke).
Explanation:
Iron is the second most abundant metal found in the earth's crust after aluminium. It is not found in the free metallic state but are extracted from rocks which are rich in iron that contains other materials. These are known are iron ores and the most common iron ores are haematite ( Fe2O3).
Iron can be extracted from its ore with the used of blast furnace. The materials used for extraction of iron includes:
--> Coke
--> haematite( iron ore)
--> limestone and
--> Hot air.
The iron ore is first roasted in air so that iron(III)oxide is produced. The iron(III)oxide is then mixed with coke and limestone and heated to a very high temperature. Hot air is introduced into it from the bottom of the furnace. The coke is oxidizes the the oxygen in the hot air blast to liberate carbondioxide.
Give 3 Examples of where potential energy was converted to knlinetic energy:
Curtain
A ball before moving
An apple from the tree then falling down
When the Curtains are still, we call the that potential energy. If you move the curtains around, that is kinetic energy
The ball is still, that is potential energy. Then the ball is moving, the is kinetic energy
There is a apple ganging from a tree, that is potential energy. That apple is fall, this is kinetic energy
Hope this helps
Don't type or write in the answer, I'm not sure what from the lab means. These are a few potential into kinetic energy I could have think of!