Heat
gained in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
When two objects are in contact,
it should be that the heat lost is equal to what is gained by the other. From
this, we can calculate things. We do as follows:
<span>Heat gained =
Heat lost</span>
mC(T2-T1) = - mC(T2-T1)
C(liquid water) = 4.18 J/gC
C(ice) = 2.11 J/gC
</span><span>(354 mL)(1.0 g/mL)(4.18 J/gC)(26 C - 6 C) = m(2.11 J/gC)(6 - 0C) </span><span>
m = 2337.63 g of ice
</span>
The correct answer to
the question that is stated above is letter c, <span> the outer electron shell.</span>
Valence electrons occur<span> in the outermost shells of an </span>atom.
>> <span>Valence electrons are </span>electrons<span> that are associated with an </span>atom<span>, and that can participate in the formation of a </span>chemical bond.
That's because the first and last carbon atoms cannot be branched to form an isomer . Therefore only the three middle carbon atoms can form isomers.
Answer:
H2 > N2 > Ar > CO2
Explanation:
Graham's law explains why some gases efuse faster than others. This is due to the difference i their molar mass. Generally; The rate of effusion of gaseous substances is inversely proportional to the square rot of its molar mass.
This means gases with low molar masses would have higher efusion rate compared to gases with higher molar masses.
So now we just need to compare the molar masses of the various gases;
Ar - 39.95
CO2 - 44.01
H2 - 2
N2 - 28.01
To obtain the order in increasing rate, we have to order the gases in decreasing molar mass. This order of increasing rate is given as;
H2 > N2 > Ar > CO2