Answer:
Effectiveness and cold stream output temperature of the heat exchange Increases. So, Answer is b) Increases.
Explanation:
We have a heat exchanger, and it is required to compare the effectiveness and cold stream output if the length is increased.
Heat exchangers are engineering devices used to transfer energy. Thermal energy is transferred from Fluid 1 - Hot fluid (HF) to a Fluid 2 - Cold Fluid (CF). Both fluids 1 and 2 can flow with different values of mass flow rate and different specific heat. When the streams go inside the heat exchanger Temperature of Fluid 1 (HF) will decrease, at the same time Temperature of the Fluid 2 (CF) will increase.
In this case, we need to analyze the behavior taking into account different lengths of heat exchangers. If the length of the heat exchanger increases, it means the transfer area will increases. Heat transfer will increase if the transfer area increases. In this sense, the increasing length is the same than increase heat transfer.
If the heat transfer increases, it means Fluid 1 (HF) will reduce its temperature, and at the same time Fluid 2 (CF) will increase its temperature.
Finally, Answer is b) Effectiveness and cold stream output temperature increases when the length of the heat exchanger is increased.
Answer:
58.9mL
Explanation:
Given parameters:
Initial volume = 34.3mL = 0.0343dm³
Initial concentration = 1.72mM = 1.72 x 10⁻³moldm⁻³
Final concentration = 1.00mM = 1 x 10⁻³ moldm⁻³
Unknown:
Final volume =?
Solution:
Often times, the concentration of a standard solution may have to be diluted to a lower one by adding distilled water. To find the find the final volume, we must recognize that the number of moles of the substance in initial and final solutions are the same.
Therefore;
C₁V₁ = C₂V₂
where C and V are concentration and 1 and 2 are initial and final states.
now input the variables;
1.72 x 10⁻³ x 0.0343 = 1 x 10⁻³ x V₂
V₂ = 0.0589dm³ = 58.9mL
Answer:
The new pressure is 53.3 kPa
Explanation:
This problem can be solved by this law. when the volume remains constant, pressure changes directly proportional as the Aboslute T° is modified.
T° increase → Pressure increase
T° decrease → Pressure decrease
In this case, temperature was really decreased. So the pressure must be lower.
P₁ / T₁ = P₂ / T₂
80 kPa / 300K = P₂/200K
(80 kPa / 300K) . 200 K = P₂ → 53.3 kPa
Very simply, you get twice as much Hydrogen as Oxygen, because the chemical formula is H2O, meaning two hydrogen atoms bonded to one oxygen atom.