The balanced chemical equation is given as:
2CH3CH2OH(l) → CH3CH2OCH2CH3(l) + H2O(l)
We are given the yield of CH3CH2OCH2CH3 and the amount of ethanol to be used for the reaction. These values will be the starting point for the calculations.
Theoretical amount of product produced:
329 g CH3CH2OH ( 1 mol / 46.07 g ) ( 1 mol CH3CH2OCH2CH3 / 2 mol CH3CH2OH ) (74.12 g / mol ) = 264.66 g CH3CH2OCH2CH3
% yield = .775 = actual yield / 264.66
actual yield = 205.11 g CH3CH2OCH2CH3
Ans: Have the same number of electron shells
Answer:
0.252 milimoles
Explanation:
To convert mass of a substance to moles it is necessary to use the molar mass of the substance.
The formula of morphine is C₁₇H₁₉NO₃, thus, its molar mass is:
C: 17*12.01g/mol = 204.17g/mol
H: 19*1.01g/mol = 19.19g/mol
N: 1*14g/mol = 14g/mol
O: 3*16g/mol = 48g/mol.
204.17 + 19.19 + 14 + 16 = <em>285.36g/mol</em>
Thus, moles of 71.891 mg = 0.071891g:
0.071891g × (1mol / 285.36g) = 2.5193x10⁻⁴ moles
As 1 mole = 1000 milimoles:
2.5193x10⁻⁴ moles = <em>0.252 milimoles</em>
Answer:
see explanation below
Explanation:
Question is incomplete, so in picture 1, you have a sample of this question with the missing data.
Now, in general terms, the absorbance of a substance can be calculated using the beer's law which is the following:
A = εlc
Where:
ε: molar absortivity
l: distance of the light in solution
c: concentration of solution
However, in this case, we have a plot line and a equation for this plot, so all we have to do is replace the given data into the equation and solve for x, which is the concentration.
the equation according to the plot is:
A = 15200c - 0.018
So solving for C for an absorbance of 0.25 is:
0.25 = 15200c - 0.018
0.25 + 0.018 = 15200c
0.268 = 15200c
c = 0.268/15200
c = 1.76x10⁻⁵ M
You have to put your attention to the unit of concentration. It is expressed in terms of molarity, which is represented in M. It is the number of moles solute per liter solution. So, you simply have to multiply the molarity with the volume in liters.
Volume = 275 mL * 1 L/1000 mL = 0.275 L
<em>Moles Ba(OH)₂ = (0.200 M)(0.275 L) = 0.055 mol</em>