Answer:
Euler's method is a numerical method used in calculus to approximate a particular solution of a differential equation. As a numerical method, we have to apply the same procedure many times, until get the desired result.
In first place, we need to know all the values the problem is giving:
- The step size is 0.2; h = 0.2. This step size is a periodical increase of the x-variable, which will allow us to calculate each y-value to each x.
- The problem is asking the solution y(1), which means that we have to find the y-value assigned for x = 1, through the numerical method.
- The initial condition is y(0) = 9. In other words,
.
So, if the initial x-value is 0, and the step size is 0.2, the following x-value would be:
; then
;
; and so on.
Now, we have to apply the formula to find each y-value until get the match of
, because the problem asks the solution y(1).
According to the Euler's method:

Where
, and
;
.
Replacing all values we calculate the y-value assigned to
:
.
Now,
,
. We repeat the process with the new values:

Then, we repeat the same process until get the y-value for
, which is
, round to four decimal places.
Therefore,
.
630 cherries
You can setup a ratio using
and solve for x by multiplying 210*9 and dividing by 3 to get 630 cherries.
y = x - 2.....the slope here is 1. A parallel line will have the same slope
y = mx + b
slope(m) = 1
(2,-2)...x = 2 and y = -2
now we sub and find b, the y int
-2 = 1(2) + b
-2 = 2 + b
-2 - 2 = b
-4 = b
so ur parallel line is : y = x - 4
Answer:
A
Step-by-step explanation:
SAS = side-angle-side
This means that, in order to prove that the triangles are congruent, they must have two congruent sides with the angle between them to the same.
We know that sides AB, ED, AC, and DF are all congruent as they all have a single mark through them. From this, you can conclude that the triangles already share two sides. All we need now is the angles in between to be congruent. This means that angle A and angle D need to be congruent.
I hope this helps!
Answer:
x = -2
Step-by-step explanation: