Step-by-step explanation:
it think it will help you
Answer:
Unfortunately, your answer is not right.
Step-by-step explanation:
The functions whose graphs do not have asymptotes are the power and the root.
The power function has no asymptote, its domain and rank are all the real.
To verify that the power function does not have an asymptote, let us make the following analysis:
The function
, when x approaches infinity, where does y tend? Of course it tends to infinity as well, therefore it has no horizontal asymptotes (and neither vertical nor oblique)
With respect to the function
we can verify that if it has asymptote horizontal in y = 0. Since when x approaches infinity the function is closer to the value 0.
For example: 1/2 = 0.5; 1/1000 = 0.001; 1/100000 = 0.00001 and so on. As "x" grows "y" approaches zero
Also, when x approaches 0, the function approaches infinity, in other words, when x tends to 0 y tends to infinity. For example: 1 / 0.5 = 2; 1 / 0.1 = 10; 1 / 0.01 = 100 and so on. This means that the function also has an asymptote at x = 0
Answer:
Degree of freedoms F(4,40)
Step-by-step explanation:
Given:
There is a study which is involving 5 different groups that each contains 9 participants (totally 45)
The objective is to calculate the degree of freedoms
Formula used:
Numerator degree of freedom = k-1
denominator degree of freedom=N-K
Solution:
Numerator degree of freedom = k-1
denominator degree of freedom=N-K
Where,
K= number of groups = 5
N= total number of observations
which is given as follows,
N=45
Then,
Numerator degree of freedom = k-1
=5-1
=4
Denominator degree of freedom = N-K
=45-5
=40
Therefore,
Degree of freedoms, F(4,40)
It depends on the function