Answer:
(3) Both extensional as well as compressional strain is produced
Explanation:
Answer:
#_photon = 5 10²⁰ photons / s
Explanation:
For this exercise let's calculate the energy of a single quantum of energy, use Planck's law
E = h f
c= λ f
E = h c / λ
λ= 1000 nm (1 m / 109 nm) = 1000 10⁻⁹ m
Let's calculate
E₀ = 6.6310⁻³⁴ 3 10⁸/1000 10⁻⁹
E₀ = 19.89 10⁻²⁰ J
This is the energy emitted by a photon let's use a proportions rule to find the number emitted in P = 100 w
#_photon = P / E₀
#_photon = 100 / 19.89 10⁻²⁰
#_photon = 5 10²⁰ photons / s
Answer:
The terminal velocity is 
Explanation:
From the question we are told that
The mass of the squirrel is 
The surface area is 
The height of fall is h =4.8 m
The length of the prism is 
The width of the prism is 
The terminal velocity is mathematically represented as

Where
is the density of a rectangular prism with a constant values of 
is the drag coefficient for a horizontal skydiver with a value = 1
A is the area of the prism the squirrel is assumed to be which is mathematically represented as


substituting values


We will have the following:

So, the heat to add is 3611.52 Joules.
Do you have a book about it? or if you have a dictionary?