Answer:
Explanation:
The bead is moving on a vertical circular path so it must have a centripetal force towards the centre.
This force is equal to m v² / r
v is velocity of bead and r is radius of the circular path.
The vertical hoop is also rotating about a vertical axis passing through the centre at frequency f so the bead will experience a cetrifugal force due to rotation of the hoop. Its value is
m ω² r . Only at the point o degree and 180 degree , these forces are opposite to each other so at these points , the bead will be in equilibrium .
mv² / r = m ω² r
v² = ω² r²
v = ω r
= 2π f r
= 2 x 3.14 x 2 x 0.22
v = 2.76 m /s
For the bead to rise upto point θ = 90 degree , height achieved is radius R
required velocity = √ 2gR
= √ 2x 9.8x.22
= 2.076 m/s
This velocity is less than the velocity calculated earlier so the bead will be able to ride the required height.
v = 2.76 m/s
Answer:
<em>Well, I think the best answer will be is </em><em>1.59 g/mL Good Luck!</em>
Answer:
Explanation:
θ( p ) + θ( r ) = 90
θ (r) = angle of refraction and θ ( p ) is polarising angle.
given θ ( r ) = 31.8
θ ( p ) = 90 - 31.8 = 58.2 degree
ii ) Tanθ ( p ) = n ( refractive index ) = Tan 58.2 = 1.6
Answer: The net force acting on the car 1,299.3 N.
Explanation:
Mass of the car = 710 kg
Initial velocity of the car of the ,u= 37 km/h= 10.27 m/s 
Final velocity of the car,v = 120 km/h = 33.33 m/s
time taken b y car = 12.6 sec
v-u=at





The net force acting on the car 1,299.3 N.
The boy’s foot causes the motion. His foot is the one that causes the ball to roll down the hill.