We want to find the work done and power exerted, let’s start with work first.
We know that the equation for work is: W = F * D. We need to find the force which we can find by using: F = M * A.
Mass: 300kg
Acceleration (using equation from photo): 1.25 m/s^2
(The equation says x but can be used with y values)
If you are confused about how I found the acceleration; I plugged in 2.5 for the final y value, 0 for the initial y value, 0 for the initial velocity and 4 for t squared.
To solve, for acceleration it’s a matter of simple algebra. You can subtract the initial y position and the initial velocity from the final y position because they are 0. This leaves you with 2.5 m = 1/2a * t^2, from here I multiplied 2.5 by 2 to get rid of the 1/2. Now I have 5 = a * t^2. T^2 is just 2 squared, so four. Simply divide 5 by 4, and boom, you get 1.25 m/s^2.
Force = 300 kg * 1.25 m/s^2 = 375 Newtons
So, work = 500 N * 2.5 m = 1000 Joules
Power: W/t
So, Power = 1000 J / 2 seconds = 500 Watts
Hope this helps!
Answer:
The position of the particle is 6m
The velocity of the particle is 16 m/s in negative direction
The acceleration of the object is -40 m/s²
Explanation:
Given;
motion of the particle along a straight line as x = 6 + 4t² - t⁴
The position of the object when t = 2s
x = 6 + 4(2)² - (2)⁴
x = 6 + 16 - 16
x = 6m
The velocity of the object when t = 2s
Velocity = dx/dt
dx/dt = 8t - 4t³
when t = 2s
Velocity = 8(2) - 4(2)³
Velocity = 16 - 32
Velocity = -16m/s
Velocity = 16 m/s (in negative direction)
The acceleration of the object when t = 2s
Acceleration = d²x/dt² = 8 - 12t²
Acceleration = 8 - 12 (2)²
Acceleration = -40 m/s²
Answer:
Fg = 4.2*10²² N
Explanation:
The gravitational force between any two masses, provided that can be approximated by point masses (comparing their diameters with the distance between them), obeys the Newton's Universal Law of Gravitation, which states that the force (always attractive) is proportional to the product of the masses and inversely proportional to the square of the distance between them (this as a consequence of our Universe being three-dimensional), as follows:

So, if one of the masses increases 6 times, the force between them will be directly 6 times larger, so the new magnitude of the force will be as follows:
Fg₂ = Fg₁*6 = 7*10²¹ N* 6 = 4.2*10²² N
The kinetic energies of a light and a heavy body are equivalent. The momentum is greater for the light body.
<h3>What is momentum?</h3>
Momentum is characterized as the intensity of a body's motion. As momentum depends on both velocity and the direction of the body's motion, it is quantified by "mass velocity". Since velocity is a vector and mass is a scalar, momentum is a vector quantity.
As a result of its higher mass, a heavy object will move with more momentum. Only when the average speed of the heavy particles is lower than that of the light particles will the average kinetic energy of the light particles equal the average kinetic energy of the heavy particles.
At the same temperature and pressure, lighter gases will move more quickly than heavier ones. 0K on the Kelvin scale denotes that the particles are not moving.
To learn more about momentum refer to:
brainly.com/question/1042017
#SPJ4