-- reduce the length of a wire to 1/2 . . . cut the resistance in half
-- reduce the diameter to 1/4 . . . reduce the cross-section area by (1/4²) . . . increase the resistance by 16x .
-- R2 = (R1) · (1/2) · (16) = 8 · R1
<em>-- R2 / R1 = 8</em>
C) When the time runs out (usually in sports such as soccer, but i don’t know what sport you’re referring to)
65% would be ur answer
hope it helps
Answer:
All of the above
Explanation:
Sound waves are mechanical waves consisting of the oscillations of the particles in a medium. They are longitudinal waves, which means that the vibrations of the particles occur in a direction parallel to the direction of propagation of the wave.
This type of wave consists of alternating regions where:
- the density of the particles is higher: these regions are called compressions, and they correspond to high pressure regions
- the density of the particles is lower: these regions are called rarefactions, and they correspond to low pressure regions
<span>So we want to know why the does a bouncing ball rise to a lower height with each bounce. So lets say the ball is first on some height h. There it has potential energy Ep=m*g*h. Then as the ball starts falling to the ground the energy converts to kinetic energy Ek=(1/2)*m*v^2. When the ball falls to the ground, the kinetic energy transforms to elastic energy because the ball deforms as it hits the ground and some small quantity of heat. The heat goes to the air and to the ground so it gets removed from the system. So there is less energy in the system to be converted back to kinetic energy as the ball starts to rise in height again. Thats why the ball is not able to get bact to the same height as it started from. </span>