Answer:
A)0.00966 N/C
B) counterclockwise direction
Explanation:
We are given;
Diameter of the metal ring; d = 4.3 cm
Radius;r = 2.15 cm = 0.021- m
Initial magnetic field, B = 1.12 T
Rate of decrease of the magnetic field;dB/dt = 0.23 T/s
Now, as a result of change in magnetic field, an emf will be induced in it. Thus, , electric field is induced and given by the formula :
∫E•dr = d/dt∫B.A •dA
This gives;
E(2πr) = dB/dt(πr²)
Gives;. 2E = dB/dt(r)
E = dB/dt × 2r
We are given;
E = 0.23 × 2(0.021)
E = 0.00966 N/C
The magnitude of the electric field induced in the ring has a magnitude of 0.00966 N/C
B) The direction of electric field will be in a counterclock wise direction when viewed by someone on the south pole of the magnet
Answer:
it depends on what you wanna get
if its chicken nuggies then mcdonalds
if its bomb a.ss tacos that taste pretty good but with meat that looks like literal sh.it then probably tacobell
Answer:
μ = 0.375
Explanation:
F = Applied force on the trash can = 75 N
W = weight of the trash can = 200 N
f = frictional force acting on trash can
Since the trash can moves at constant speed, force equation for the motion of can is given as
F - f = 0
75 - f = 0
f = 75 N
μ = Coefficient of friction
frictional force is given as
f = μ W
75 = μ (200)
μ = 0.375
Answer:
Hello friend where is the figure of the question
Answer:
The change in kinetic energy (KE) of the car is more in the second case.
Explanation:
Let the mass of the car = m
initial velocity of the first case, u = 22 km/h = 6.11 m/s
final velocity of the first case, v = 32 km/h = 8.89 m/s
change in kinetic energy (K.E) = ¹/₂m(v² - u²)
ΔK.E = ¹/₂m(8.89² - 6.11²)
= 20.85m J
initial velocity of the second case, u = 32 km/h = 8.89 m/s
final velocity of the second case, v = 42 km/h = 11.67 m/s
change in kinetic energy (K.E) = ¹/₂m(v² - u²)
ΔK.E = ¹/₂m(11.67² - 8.89²)
= 28.58m J
The change in kinetic energy (KE) of the car is more in the second case.