1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
9

A car comes to a bridge during a storm and finds the bridge washed out. The driver must get to the other side, so he decides to

try leaping it with his car. The side the car is on is 21.5 m above the river, whereas the opposite side is a mere 1.5 m above the river. The river itself is a raging torrent 69.0 m wide.
Required:
a. How fast should the car be traveling just as it leaves the cliff in order just to clear the river and land safely on the opposite side?
b. What is the speed of the car just before it lands safely on the other side?
Physics
1 answer:
aksik [14]3 years ago
4 0

Answer:

The answer is below

Explanation:

a) The vertical displacement = Δy = 21.5 m - 1.5 m = 20 m

The horizontal displacement = Δx = 69 m wide

Using the formula:

\Delta y = u_yt+ \frac{1}{2}a_yt^2\\ \\u_y=initial\ velocity\ of \ car\ in\ y\ direction = 0,a_y=g=acceleration\ due\ to\ gravity\\=10m/s^2\\\\\Delta y =  \frac{1}{2}a_yt^2\\\\\Delta y=\frac{1}{2}a_yt^2\\\\t=\sqrt{\frac{2\Delta y}{a_y} }=\sqrt{\frac{2*20}{10} }  =2\ m/s

Also:

\Delta x = u_xt+ \frac{1}{2}a_xt^2\\ \\u_x=initial\ velocity\ of \ car\ in\ x\ direction = 0,a_x=acceleration=0\\\\\Delta x =  u_xt\\\\u_x=\frac{\Delta x}{t}=\frac{69}{2} =34.5\ m/s

b)The car is moving at a constant speed in the horizontal direction, hence the initial velocity = final velocity

v_x=u_x=34.5\ m/s\\\\v_y=u_y+a_yt\\\\v_y=0+gt\\\\v_y=10(2)=20\ m/s\\\\v=\sqrt{v_x^2+v_y^2}=\sqrt{34.5^2+20^2}=39.9\ m/s\\ v=39.9\ m/s

You might be interested in
Which of the following is the best example of a primary circular reaction?
olga55 [171]

Primary Circular Reactions (1-4 months): This substage involves coordinating sensation and new schemas. For example, a child may suck his or her thumb by accident and then later intentionally repeat the action. These actions are repeated because the infant finds them pleasurable.

4 0
3 years ago
An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a
S_A_V [24]

Answer:

Given:

Thermal Kinetic Energy of an electron, KE_{t} = \frac{3}{2}k_{b}T

k_{b} = 1.38\times 10^{- 23} J/k = Boltzmann's constant

Temperature, T = 1800 K

Solution:

Now, to calculate the de-Broglie wavelength of the electron, \lambda_{e}:

\lambda_{e} = \frac{h}{p_{e}}

\lambda_{e} = \frac{h}{m_{e}{v_{e}}              (1)

where

h = Planck's constant = 6.626\times 10^{- 34}m^{2}kg/s

p_{e} = momentum of an electron

v_{e} = velocity of an electron

m_{e} = 9.1\times 10_{- 31} kg = mass of electon

Now,

Kinetic energy of an electron = thermal kinetic energy

\frac{1}{2}m_{e}v_{e}^{2} = \frac{3}{2}k_{b}T

}v_{e} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{e}}}

}v_{e} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{9.1\times 10_{- 31}}}

v_{e} = 2.86\times 10^{5} m/s                    (2)

Using eqn (2) in (1):

\lambda_{e} = \frac{6.626\times 10^{- 34}}{9.1\times 10_{- 31}\times 2.86\times 10^{5}} = 2.55 nm

Now, to calculate the de-Broglie wavelength of proton, \lambda_{e}:

\lambda_{p} = \frac{h}{p_{p}}

\lambda_{p} = \frac{h}{m_{p}{v_{p}}                             (3)

where

m_{p} = 1.6726\times 10_{- 27} kg = mass of proton

v_{p} = velocity of an proton

Now,

Kinetic energy of a proton = thermal kinetic energy

\frac{1}{2}m_{p}v_{p}^{2} = \frac{3}{2}k_{b}T

}v_{p} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{p}}}

}v_{p} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{1.6726\times 10_{- 27}}}

v_{p} = 6.674\times 10^{3} m/s                               (4)                    

Using eqn (4) in (3):

\lambda_{p} = \frac{6.626\times 10^{- 34}}{1.6726\times 10_{- 27}\times 6.674\times 10^{3}} = 5.94\times 10^{- 11} m = 0.0594 nm

7 0
3 years ago
True or False an overtone occurs when two or more sound waves are produced at the same time.
Setler79 [48]

Answer:

True, overtone occurs when two or more sounds are produced at the same time.

5 0
3 years ago
Read 2 more answers
A bicycle racer is going downhill at 11.0 m/s when, to his horror, one of his 2.25 kg wheels comes off when he is 75.0 m above t
alex41 [277]

Answer:

a.) Speed V = 29.3 m/s

b.) K.E = 1931.6 J

Explanation: Please find the attached files for the solution

4 0
3 years ago
Convection cells in the mantle drive movements of the plates. True or False
nekit [7.7K]

Answer:

True

Explanation:Plates at our planet's surface move because of the intense heat in the Earth's core that causes molten rock in the mantle layer to move. It moves in a pattern called a convection cell that forms when warm material rises, cools, and eventually sink down. As the cooled material sinks down, it is warmed and rises again.

3 0
3 years ago
Other questions:
  • If a topographic map included a 6,000 ft. mountain next to an area of low hills, which would best describe the contour lines on
    8·1 answer
  • Why are electromagnets used in metal scrap yards<br> PLEASE HELP!!!!!!
    14·1 answer
  • A LASIK vision-correction system uses a laser that emits 10-ns-long pulses of light, each with 3.0 mJ of energy. The laser beam
    6·1 answer
  • Instructions for an inherited trait are called
    11·2 answers
  • Whats the temperature -15°F in degrees Celsius?
    5·2 answers
  • A car drives 100 km north, 50 km east, then 10 km south. What is the car's displavement?​
    15·1 answer
  • An aluminum bar has a mass of 9 kg in the air. Calculate its volume. Now imagine that you submerge the aluminum bar in water han
    6·1 answer
  • I need a diagram for how a scrap heap magnet works
    14·1 answer
  • A student drops a ball from a height of 97.0m. If the ball increases speed at a uniform rate of 10.0m/s^2, determine all unknown
    14·1 answer
  • Why does the book with more mass feel heavier in your hand
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!