Answer:
1.25 m/s
Explanation:
Given,
Mass of first ball=0.3 kg
Its speed before collision=2.5 m/s
Its speed after collision=2 m/s
Mass of second ball=0.6 kg
Momentum of 1st ball=mass of the ball*velocity
=0.3kg*2.5m/s
=0.75 kg m/s
Momentum of 2nd ball=mass of the ball*velocity
=0.6 kg*velocity of 2nd ball
Since the first ball undergoes head on collision with the second ball,
momentum of first ball=momentum of second ball
0.75 kg m/s=0.6 kg*velocity of 2nd ball
Velocity of 2nd ball=0.75 kg m/s ÷ 0.6 kg
=1.25 m/s
Define heat capacity of a substance:
- The heat capacity of a substance can be defined as the amount of heat required to change its temperature by one degree.
Write the S.I unit of heat capacity:









-,-
When driving on roads that may be slippery, do not make any sudden changes in speed or direction. Option D is correct.
<h3 /><h3>What is a slippery surface?</h3>
The slick road sign serves as a warning. When the road is wet or ice, drivers should use extra caution and reduce their speed. When the weather is bad, avoid making any rapid changes in direction.
When driving on roads that may be slippery, do not make any sudden changes in speed or direction. It may cause accident because the vehicle can lose their balance.
Hence, option D is correct.
To learn more about the slippery surface, refer to the link;
brainly.com/question/1953680
#SPJ1
Answer:
The distance travelled on the freeway is 149.5 miles.
Explanation:
The school bus travels on the freeway at constant speed. According to the statement, we need to calculate the distance travelled by the vehicle by means of the following formula:
(1)
Where:
- Traveled distance, in miles.
- Speed, in miles per hour.
- Time, in hours.
If we know that
and
, then the distance travelled by the school bus is:



The distance travelled on the freeway is 149.5 miles.
Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.
