Answer:
35000 KJ
Explanation:
The equation for the kinetic energy is given by the formula :


OR
Units will be kilojoules since the units of mass was kilograms .
Our final answer is 35000 KJ
Hope this helped and have a good day
<span>The change in internal energy is only gravitional PE because the tube is being drug up at a constant speed. Since it is at a constant speed, the change in KE is 0.
Change in PE = m*g*h = 78 kg * 10 m/s^2 * 30 m = 23400 J
Work done on the system is from the force
Work = force * distance = 350 N * 120 m = 42000 J
So, work added 42000 J to the system, but the rider's energy only increased 23400 J. Therefore, friction took up the difference. Friction is where the thermal energy comes from
Q = 42000 J - 23400 J = 18600 J.
Therfore, friction generated 18600 J of heat to the surroundings.</span>
<u>Answer:</u>
The final velocity of the two railroad cars is 1.09 m/s
<u>Explanation:</u>
Since we are given that the two cars lock together it shows that the collision is inelastic in nature. The final velocity due to inelastic collision is given by

where
V= Final velocity
M1= mass of the first object in kgs = 12000
M2= mas of the second object in kgs = 10000
V1= initial velocity of the first object in m/s = 2m/s
V2= initial velocity of the second object in m/s = 0 (given at rest)
Substituting the given values in the formula we get
V = 2×12000 + 0x100012000 + 10000= 2400022000= 1.09 m/s

Which is the final velocity of the two railroad cars