Answer:
if the frequency is double, the wavelength is only half as long
Explanation:
To determine the force that acts on the mass, just multiply the mass by the gravitational field. Using the given data,
F = (2.50 kg)(14 N/kg) = 35 N
Therefore, the force that acts on the mass is equal to 35 N.
Answer:
non-accelerated movement
velocity versus time a horizontal straight line.
distance versus time gives a horizontal straight line.
accelerated motion
graph of velocity versus time s an inclined line and the slope
graph of distance versus time is a parabola of the form
Explanation:
In kinematics there are two types of steely and non-accelerated movements
In a the velocity of the body is constant therefore a speed hook against time gives a horizontal straight line.
A graph of distance versus time is a straight line whose slope is the velocity of the body
x = v t
In an accelerated motion the velocity changes linearly with time, so a graph of velocity versus time is an inclined line and the slope is the value of the acceleration of the body
v = v₀ + a t
A graph of distance versus time is a parabola of the form
x =v₀ t + ½ a t²
<h2>
<u>How</u><u> </u><u>to</u><u> </u><u>solve</u><u>?</u></h2>
We know that, Velocity is the rate of displacement covered. Displacement is the shortest path between the Initial and Final point covered by the body. So,
- Velocity = Displacement / Time
And, when it comes to Average velocity, It is the total displacement by total time taken. So, By using this let's solve this question.....
<h2>
<u>Solution</u><u>:</u></h2>
✏️ Refer to the attachment...
Let the body goes to point A that is 7 m East of the Initial point. Then it comes backward because West is opposite to East in perpendicular direction. It covers 1.5 m backwards in the same line to reach B which is the Final point.
So,
- Displacement = Final point - Initial point
⇛ Displacement = 7 m - 1.5 m
⇛ Displacement = 5.5 m
Total time taken,
⇛ 2 hours + 1 hour
⇛ 3 hours
Finding Average displacement,
⇛ Total displacement / Total time taken
⇛ 5.5 m / 3 hours
⇛ 1.83333.... hours
So, the Final answer is,

<u>━━━━━━━━━━━━━━━━━━━━</u>
To solve this problem, we must imagine that Jim’s initial
position, the position of the rock, and Jim’s final position all connects to
form a triangle. Now we can imagine that the triangle is a right triangle with
the 90° angle on the initial position.
The angle of 30° is directly opposite to the length of his
total stride while the width of the river is the side adjacent to the angle.
Therefore can use the tan function to solve for the width of the river:
tan θ = opposite side / adjacent side
tan 30 = total stride distance / width of river
where total stride distance = 65 * 0.8 = 52 m
width of river = 52 m / tan 30
<span>width of river = 90.07 m</span>