since airplane is thrown towards west with speed 6 m/s
while air is blowing with speed 8 m/s towards north
so here the net speed of air plane will be the resultant of airplane speed and wind speed always
SO here we can say it would be a combination of vector along west with must be of length 6 m/s and other vector is towards north with is of length 8 m/s
so correct answer must be 1st option
Answer:
Maximum speed of the car is 17.37 m/s.
Explanation:
Given that,
Radius of the circular track, r = 79 m
The coefficient of friction, 
To find,
The maximum speed of car.
Solution,
Let v is the maximum speed of the car at which it can safely travel. It can be calculated by balancing the centripetal force and the gravitational force acting on it as :


v = 17.37 m/s
So, the maximum speed of the car is 17.37 m/s.
Answer: The lower areas of the Atmosphere have a high temperature through the heats from the ground.
Explanation: High temperature experienced on the Earth surface is majorly caused by heats from the ground ( Earth crust).As a person ascend up to the Toposphere the temperature continues to reduce because because the heat from the ground is reduced as the heights increased.
It has been proven that as a person ascends into the Toposphere the amount of air and pressure reduces this will eventually lead to expansion of the gas particles which will then reduce the temperature.
I think it’s either A or B
Answer:
The term rotational and irrotational flow is associated withe the flow of particles in fluid.
The common example of irrrotational flow can be seen on the carriages of the Ferris wheel (giant wheel).
Explanation:
- If the fluid is rotating along its axis with the streamline flow of its particles,then this type of flow is rotational flow.
- Similarly if fluid particles do not rotate along its axis while flowing in a stream line flow then it is considered as the irrotational flow.
- In majority, if the flow of fluid is viscid then it is rotational.
- Fluid in a rotating cylinder is an example of rotating flow.