1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tom [10]
3 years ago
11

Sharon buys 14 folders for 0.75 dollars each how much change she will

Mathematics
1 answer:
AlekseyPX3 years ago
7 0
0.75 x 14 = 10.50
15 - 10.50 = 4.50
your answer is : Sharon will receive $4.50 change
You might be interested in
How many 14ths foot sections can she cut from this board
OverLord2011 [107]
How big is the board
3 0
3 years ago
I need help solving the proportion<br> <img src="https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7Bm%2B5%7D%20%3D%20%5Cfrac%7B2%7D%7Bm%2B
user100 [1]
<h3><u><em>Answer: Hello I am going to solve the rational equation by combining expressions and isolating the variable m . Exact Form: m = − 1 4 Decimal Form: m = − 0.25</em></u></h3><h3><u><em>1.Subtract  5 from both sides of the equation</em></u></h3><h3><u><em>2.Simplify</em></u></h3><h3><u><em>3.Multiply all terms by the same value to eliminate fraction denominators</em></u></h3><h3><u><em>4.Simplify</em></u></h3><h3><u><em>5.Subtract  2 from both sides of the equation</em></u></h3><h3><u><em>6.Simplify</em></u></h3><h3><u><em>7.Divide both sides of the equation by the same term</em></u></h3><h3><u><em>8. and finaly Simplify</em></u></h3><h3 /><h3><u><em>Hope this help's!</em></u></h3>

3 0
3 years ago
Which is the area of a triangle with a base of 10 inches and a height of 3 inches
klio [65]

Answer:

area = 15 in²

Step-by-step explanation:

The area (A) of a triangle is calculated using the formula

A = \frac{1}{2} bh ( b is the base and h the height )

here b = 10 and h = 3, hence

A = \frac{1}{2} ×10 × 3 = 15 in²

8 0
3 years ago
Read 2 more answers
Help with num 3 please. thanks​
Alja [10]

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

4 0
3 years ago
Find the slope of the line. A.-4, B.4, C. 1/4, D. -1/4
geniusboy [140]
You need to give us points from the line or a picture of it or we can't answer the question.
7 0
3 years ago
Other questions:
  • At the beginning of a call to the cable company, a message tells customers, “After you finish talking to our customer service re
    12·2 answers
  • a 30% increase followed by a 15% decreas is it same as the origional price,is it less the the origional ,or is it greater than t
    15·1 answer
  • The number of home-runs hit by each player on the Bobcats baseball team is listed below. Which measure of center best describes
    13·2 answers
  • Predict the number of chocolate chips in nine pancakes
    10·1 answer
  • PLEASE HURRY AND HELP !!!!!!
    12·1 answer
  • question 1 : what is the interquartile range for this set of data? A. 38 B. 42 C. 65 D. 80 Question 2: what is the median of thi
    10·2 answers
  • Round to 387.4 when rounded to the nearest tenth
    12·1 answer
  • The LCM of two numbers is 352
    8·1 answer
  • GraceRosalia only should answer: No one else ....I beg others not to answer..<br>√625 - √25 + √100​
    9·2 answers
  • Name the quadrant of a point with positive x-coordinate and negative<br> y-coordinate.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!