1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha2012 [34]
3 years ago
7

Express the radical using the imaginary unit, i. Express your answer in simplified form.

Mathematics
1 answer:
Jobisdone [24]3 years ago
8 0

Answer:

plus or minus 3 i (imaginary unit i) multiplied by the principle root of 3

You might be interested in
A line passes through points (2,5) and (5, 14). What is the slope of this line?
topjm [15]

<u>We know that:</u>

Slope of a line = change in y coordinate / change in x coordinate

<u>We are given:</u>

First point = (2,5)

Second point = (5, 14)

<u>Calculating the change in y coordinate:</u>

change in y (also represented by Δy) = second y - first y

Δy = 14 - 5

Δy = 9

<u>Calculating the change in x coordinate:</u>

Δx = second x - first x

Δx = 5 - 2

Δx = 3

<u>Slope of the line:</u>

Slope = (Δy) / (Δx)

Slope = 9 / 3                                              [replacing the values]

Slope = 3

7 0
2 years ago
Pls help! will mark brainliest if correct
nevsk [136]

I dont know what is it sorry but I try the love yaaysya

3 0
3 years ago
Ally sold 18 boxes of girl scout cookies. This was 40% of the number of boxes that Kayla sold. How many boxes did Kayla sell?
S_A_V [24]

Answer:

Kayla sold 90 boxes of cookies.

Step-by-step explanation:

let's have X be the number of boxes Kayla sold.

x⇒100%

18⇒20%

Find x,

x=100/20 × 18

x=90

6 0
3 years ago
Can someone help me please
oksano4ka [1.4K]
The answer would be D

8 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Other questions:
  • URGENT PLEASE HELP!!!
    14·2 answers
  • I need help finding the missing angle with work plz <br> ANSWER ASAP!!!!!!
    14·1 answer
  • Help me please !!!!!!!!
    15·1 answer
  • How do you figure out what is 5.6 ÷ 0.014
    6·1 answer
  • Find the slope of a line that passes through (7,-6) and (-5,-8)
    12·1 answer
  • What is a rule for the sequence below?
    7·2 answers
  • 1/10 on a number line ​
    8·1 answer
  • 17. Ms Steele is building a circular fountain, on the diagram 2 centimeters is equal to 5 feet. If
    12·2 answers
  • Solve the inequality below. -18 x<br> -7 &gt; x<br> 7 &lt; x<br> -7 &lt; x
    5·1 answer
  • The sum of four consecutive odd integers is 328. What are the integers? show your work please
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!