What’s the problem cause without the problem I can’t helo
The change in the water vapors is modeled by the polynomial function c(x). In order to find the x-intercepts of a polynomial we set it equal to zero and solve for the values of x. The resulting values of x are the x-intercepts of the polynomial.
Once we have the x-intercepts we know the points where the graph crosses the x-axes. From the degree of the polynomial we can visualize the end behavior of the graph and using the values of maxima and minima a rough sketch can be plotted.
Let the polynomial function be c(x) = x
² -7x + 10
To find the x-intercepts we set the polynomial equal to zero and solve for x as shown below:
x
² -7x + 10 = 0
Factorizing the middle term, we get:
x
² - 2x - 5x + 10 = 0
x(x - 2) - 5(x - 2) =0
(x - 2)(x - 5)=0
x - 2 = 0 ⇒ x=2
x - 5 = 0 ⇒ x=5
Thus the x-intercept of our polynomial are 2 and 5. Since the polynomial is of degree 2 and has positive leading coefficient, its shape will be a parabola opening in upward direction. The graph will have a minimum point but no maximum if the domain is not specified. The minimum points occurs at the midpoint of the two x-intercepts. So the minimum point will occur at x=3.5. Using x=3.5 the value of the minimum point can be found. Using all this data a rough sketch of the polynomial can be constructed. The figure attached below shows the graph of our polynomial.
Answer:
a = l²
v = s³
Step-by-step explanation:
The area of a rectangle is the product of its length and width. When that rectangle is a square, the length and width are the same. Here, they are given as "l". Then the area of the square is ...
a = l·l = l²
__
The volume of a cuboid is the product of its height and the area of its base. A cube of edge length s has a square base of side length s and a height of s. Then its volume will be ...
v = s·(s²) = s³
The two equations you want are ...
• a = l²
• v = s³
Answer:
-3.
Step-by-step explanation:
= 6(Sum+8) = 30
= 6Sum + 48 = 30
= 6Sum = -18
= Sum = -3
Hope this helps you :)
The relationship between wavelength and frequency is expressed by the equation λν=c where λ is the wavelength, v is the frequency and c is the speed of light which has a value of 3x10^8 m/s.
λν=c
λ(3 × 10^9)= 3x10^8
λ = 0.1 m
Hope this answers the question.