Answer:
The ball will have a kinetic energy of 0.615 Joules.
Explanation:
Use the kinetic energy formula

The kinetic energy at the moment of leaving the hand will be 0.615 Joules. (From there on, as it ball is traveling upwards, this energy will be gradually traded off with potential energy until the ball's velocity becomes zero at the apex of the flight)
Answer:
A
Explanation:
According to Newton's second law, acceleration is directly proportional to the net force. As the acceleration increases (when mass is constant), the net force increases. This is represented in the following formula.


a = acceleration
f = force
m = mass
Answer:
The bass has the lowest frequency ,it only causes vibrations but at a lower frequency
Answer:
3.62 m and - 1.4 m
Explanation:
Consider a location towards the positive side of x-axis beyond the location of charge Q₂
x = distance of the location from charge Q₂
d = distance between the two charges = 2 m
For the electric field to be zero at the location
E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location


x = 1.62 m
So location is 2 + 1.62 = 3.62 m
Consider a location towards the negative side of x-axis beyond the location of charge Q₁
x = distance of the location from charge Q₁
d = distance between the two charges = 2 m
For the electric field to be zero at the location
E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location


x = - 1.4 m
Answer:
Explanation:
Given equation is ,
x =t + 2 t³ ,
dx/dt = velocity ( v ) = 1 + 6 t²
a) kinetic energy = 1/2 m v² = .5 x 4 ( 1 + 6 t² )² = 2 ( 1 + 6 t²)²
b ) Acceleration = dv /dt = 12 t .
force( F ) = mass x acceleration = 4 x 12 t = 48 t
Power = force x velocity = 48 t x ( 1 + 6 t²). = 48 t + 288 t³ )
work done = ∫ F dx =∫ 48 t x( 1 + 6t² )dt ; = [48t²/2 + 48 x 6 x t³ /3 = 24 t² + 96 t³ )]₀² = 864 J