1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slega [8]
3 years ago
13

Select the correct answer.

Physics
1 answer:
Marianna [84]3 years ago
6 0

Answer:

A

Explanation:

According to Newton's second law, acceleration is directly proportional to the net force. As the acceleration increases (when mass is constant), the net force increases. This is represented in the following formula.

f = ma

a =  \frac{f}{m}

a = acceleration

f = force

m = mass

You might be interested in
A block of ice with mass 2.00 kg slides 0.750 m down an inclined plane that slopes downward at an angle of 36.9 degrees below th
zhannawk [14.2K]

Answer: V_{f}=2.96m/s    

Firstly we have to draw the Free Body Diagram (FBD) as shown in the figure attached.

Where the weight w of the block has an x-component and y-component:

w_{x}=wsin(\theta)    (1)

w_{y}=wcos(\theta)    (2)

As well as the Normal Force N:

N_{x}=Nsin(\theta)    (3)

N_{y}=Ncos(\theta)    (4)

In addition, we know N=w, then \sum F_{y}=0

In the X-component:

\sum F_{x}=m.a

m.a=w_{x}    (5)

Substituting (1) in (5):

wsin(\theta)=m.a    (6)

In addition, we know w=m.g, where m is the mass of the block and g the gravity acceleration, which is equal to 9.8m/{s}^{2}  

So:

m.g.sin(\theta)=m.a   (7)

a=g.sin(\theta)    (8)

a=5.88m/{s}^{2}    (9)   >>>>This is the acceleration of the block

On the other hand, we have the following equation that expresses a <u>relation between</u> the distance d with the acceleration a and time t:

d=\frac{1}{2}a{t}^{2}   (10)

We already know the value of  d and calculated a, we have to find t:

t=\sqrt{\frac{2d}{a}}   (11)

t=\sqrt{\frac{2(0.75m)}{5.88m/{s}^{2}}}   (12)

t=0.50s   (13) >>>This is the time it takes to the block to go from the initial velocity V_{o} to its final velocity V_{f}

If the acceleration is the variation of the velocity in time, we can use the following equation to find V_{f}:

V_{f}-V_{o}=a.t   (13)

If V_{o}=0

V_{f}=a.t   (14)

V_{f}=(5.88m/{s}^{2})(0.50s)   (15)

Finally we get the value of the Final Velocity of the block:

V_{f}=2.96m/s    

6 0
3 years ago
A cart loaded with bricks has a total mass of 9.13 kg and is pulled at constant speed by a rope. The rope is inclined at 24.7 ◦
blagie [28]

Answer:

W = 0.63 KJ

Explanation:

Work (W) is defined as the point product of force (F) by the distance (d)the body travels due to this force.  

W= F*d *cosα Formula (1)  

F : force (N)

d : displacement (m)

α : angle between force and displacement

Newton's second law:

∑F = m*a Formula (2)  

∑F : algebraic sum of the forces in Newton (N)

m : mass s (kg)

a : acceleration  (m/s²)

We define the x-axis in the direction parallel to the movement of the cart on the ramp and the y-axis in the direction perpendicular to it.

Forces acting on the cart

W: Weight of the cart : In vertical direction

FN : Normal force : perpendicular to the floor

f : Friction force: parallel to the floor

T : tension Force,  inclined at  θ=24.7° above the horizontal

Calculated of the W

W= m*g

W= 9.13 kg* 9.8 m/s² = 89.47 N

x-y components o the  tension force (T)

Tx = Tcosθ = T*cos 24.7° (N)

Ty = Tsin θ = T*sin 24.7°  (N)

Calculated of the FN  

We apply the formula (2)  

∑Fy = m*ay ay = 0  

FN +Ty- W = 0  

FN = W-Ty  

FN =  89.47-T*sin 24.7°

Calculated of the friction force (f)

f = μk*FN

f =(0.597)*(  89.47-T*sin 24.7° )

f= 53.41-0.249T

Calculated of the tension force of the rope (f)

We apply the formula (2) :

∑Fx = m*ax  ,  ax= 0 ,because the speed of the cart  is constant

Tx - f = 0

T*cos 24.7°-( 53.41 - 0.249T )= 0

T*cos 24.7° + 0.249T = 53.41

(1.1575)T = 53.41

T= (53.41) / (1.1575)

T= 46.14 N

Work done on the cart by the rope

We apply the formula (1)

W=T*d *cosα

W= (46.14 N)*(15.1 m) *(cos24.7)

W = 632.97 (N*m) = 632.97 (J)

W = 0.63 KJ

6 0
3 years ago
Why is pure oxygen stored as a liquid under pressure
yKpoI14uk [10]
<h2>Answer: It is highly flammable.</h2>

Explanation:

Liquid oxygen is created from oxygen atoms that have been forced to assume the liquid state due to <u>compression (change of pressure) and temperature modification. </u>

Specifically this is achieved by cooling the oxygen enough to change it to its liquid state. So,<u> as the temperature drops, the atoms move more slowly because they have less energy. </u>

In this sense, in the liquid state it is easier to store and mobilize oxygen, taking into account that it is a highly flammable gas.

3 0
3 years ago
Calculate the change in length of a Pyrex glass dish (Coefficient of linear expansion for Pyrex is 3 * 10-6 / oC) that is 0.25 m
DIA [1.3K]

9*10^{-5} m

Explanation:

Step 1:

We are given the initial length of the Pyrex glass dish at a particular temperature and need to calculate the change in the length when the temperature changes by 120° C. The coefficient of linear expansion of Pyrex is provided.

Step 2:

Change in length = Coefficient of linear expansion * Change in temperature * Initial length

Step 3:

Coefficient of linear expansion = 3*10^{-6} /°C

Change in temperature = 120°C = 120 K

Initial length = 0.25 m

Step 4:

Change in length = 3*10^{-6} * 120 * 0.25 = 9*10^{-5} m

8 0
3 years ago
The magnitude of electrical force between a pair of charged particles is ____ as much when the particles are moved half as far a
Gnesinka [82]

The magnitude of the electrical force between a pair of charged particles is 4 Times as much when the particles are moved half as far apart.

This can be easily understood by Columb's law,

F_{new} = \frac{kQ_{1}Q_{2}}{r^{2}}

which state's that the amount of electrical force experienced by two charged particles is inversely proportional to the square of the distance between them.

∴ \frac{F_{new} }{F_{old} } = \frac{Distance_{new}^{2}  }{Distance_{old}^{2}  }

Now, we know the new distance is half the original distance,

F_{new} = \frac{kQ_{1}Q_{2}}{\frac{r}{2}^{2} } \\F_{new} = 4\frac{kQ_{1}Q_{2}}{r^{2}}

F_{new} = 4F_{old}

The electrical force of attraction or electrostatic force of attraction between two charged particles refers to the amount of attractive or repulsive force that exists between the two charges. This can be calculated by Columb's Law.

A charged particle in physics is a particle that has an electric charge. It might be an ion, such as a molecule or atom having an excess or shortage of electrons in comparison to protons. The same charge is thought to be shared by an electron, a proton, or another primary particle.

Learn more about electrical force here

brainly.com/question/2526815

#SPJ4

8 0
1 year ago
Other questions:
  • A baseball accelerates downward at 9.8m/s. if the gravitational force acting on the baseball is 2.2n what is the baseballs mass
    12·1 answer
  • A steel tape (a=1.300 E-5 per Celsius degrees) measures 200.0 m at 15.00 degrees celsius. It’s length at 55.00 degrees celsius i
    11·1 answer
  • Find the work done in pumping gasoline that weighs 6600 newtons per cubic meter. A cylindrical gasoline tank 3 meters in diamete
    11·1 answer
  • A Formula One race car with mass 770.0 kg is speeding through a course in Monaco and enters a circular turn at 235.0 km/h in the
    6·1 answer
  • Material speed of light
    10·1 answer
  • How is momentum conserved in a system in which two satellites connect?
    11·2 answers
  • Isthere an outward force in circular motion
    5·2 answers
  • An athlete whirls a 8.00 kg hammer m from the axis of rotation in a horizontal circle, as shown in the figure below . The hammer
    8·1 answer
  • A star has right ascension of 5 hours. Which of these statements is correct about the star?
    6·1 answer
  • Astronomers define the __________ as all of space and everything in it. It is enormous, almost beyond imagination. Question 2 op
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!