Answer:
a) The calculated value t = 5.903 > 2.572 at 0.01 level of significance
Null hypothesis is rejected at 0.01 level of significance
There is a true mean value is less than 10
b) p - value 0.00001
The p - value 0.00001 < 0.01
The result is significant at p<0.01
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given mean of the population = 10
Sample size 'n'= 35
Mean of the sample x⁻ = 14.44
Standard deviation of the sample 's' = 4.45
Level of significance ∝ = 0.01
<u><em>Step(ii)</em></u>:-
<em>Null Hypothesis H₀</em> : μ >10
<em>Alternative Hypothesis</em> : H₁ : μ < 10
Test statistic
![t = \frac{x^{-} -mean}{\frac{S}{\sqrt{n} } }](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7Bx%5E%7B-%7D%20-mean%7D%7B%5Cfrac%7BS%7D%7B%5Csqrt%7Bn%7D%20%7D%20%7D)
![t = \frac{14.44-10}{\frac{4.45}{\sqrt{35} } }](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B14.44-10%7D%7B%5Cfrac%7B4.45%7D%7B%5Csqrt%7B35%7D%20%7D%20%7D)
t = 5.903
Degrees of freedom = n-1 = 35-1 = 34
tabulated value t₀.₀₁,₃₄ = 2.572
The calculated value t = 5.903 > 2.572 at 0.01 level of significance
Null hypothesis is rejected at 0.01 level of significance
There is a true mean value is less than 10
<u><em>p- value</em></u> :
p - value 0.00001
The p - value 0.00001 < 0.01
The result is significant at p<0.01