1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Simora [160]
3 years ago
13

301 round to the nearest ten

Mathematics
2 answers:
kirill [66]3 years ago
5 0
301 to the nearest ten is 300
Nadusha1986 [10]3 years ago
4 0
It is 300 because 1 is less than 5
You might be interested in
5(y+2/5)=-13<br> what is y
jolli1 [7]

Answer:

y=11/5

Step-by-step explanation:

first divide by 5 on both sides

y+2/5=-13/5

subtract 2/5 on both sides to isolate the y

y=11/5

:))

8 0
2 years ago
Read 2 more answers
Find the surface area of the right triangular prism (above) using its net (below). <br> units
8_murik_8 [283]

Answer:

120 units^2

Step-by-step explanation:

(12)(5)(0.5)(2) + (12)(2) + (13)(2) + (5)(2) = 120 units^2

6 0
3 years ago
P=4x+qx-5<br><br> Literal expressions
Mashutka [201]

Answer:

34(43+33(jg

Step-by-step explanation:

7 0
3 years ago
For each vector field f⃗ (x,y,z), compute the curl of f⃗ and, if possible, find a function f(x,y,z) so that f⃗ =∇f. if no such f
butalik [34]

\vec f(x,y,z)=(2yze^{2xyz}+4z^2\cos(xz^2))\,\vec\imath+2xze^{2xyz}\,\vec\jmath+(2xye^{2xyz}+8xz\cos(xz^2))\,\vec k

Let

\vec f=f_1\,\vec\imath+f_2\,\vec\jmath+f_3\,\vec k

The curl is

\nabla\cdot\vec f=(\partial_x\,\vec\imath+\partial_y\,\vec\jmath+\partial_z\,\vec k)\times(f_1\,\vec\imath+f_2\,\vec\jmath+f_3\,\vec k)

where \partial_\xi denotes the partial derivative operator with respect to \xi. Recall that

\vec\imath\times\vec\jmath=\vec k

\vec\jmath\times\vec k=\vec i

\vec k\times\vec\imath=\vec\jmath

and that for any two vectors \vec a and \vec b, \vec a\times\vec b=-\vec b\times\vec a, and \vec a\times\vec a=\vec0.

The cross product reduces to

\nabla\times\vec f=(\partial_yf_3-\partial_zf_2)\,\vec\imath+(\partial_xf_3-\partial_zf_1)\,\vec\jmath+(\partial_xf_2-\partial_yf_1)\,\vec k

When you compute the partial derivatives, you'll find that all the components reduce to 0 and

\nabla\times\vec f=\vec0

which means \vec f is indeed conservative and we can find f.

Integrate both sides of

\dfrac{\partial f}{\partial y}=2xze^{2xyz}

with respect to y and

\implies f(x,y,z)=e^{2xyz}+g(x,z)

Differentiate both sides with respect to x and

\dfrac{\partial f}{\partial x}=\dfrac{\partial(e^{2xyz})}{\partial x}+\dfrac{\partial g}{\partial x}

2yze^{2xyz}+4z^2\cos(xz^2)=2yze^{2xyz}+\dfrac{\partial g}{\partial x}

4z^2\cos(xz^2)=\dfrac{\partial g}{\partial x}

\implies g(x,z)=4\sin(xz^2)+h(z)

Now

f(x,y,z)=e^{2xyz}+4\sin(xz^2)+h(z)

and differentiating with respect to z gives

\dfrac{\partial f}{\partial z}=\dfrac{\partial(e^{2xyz}+4\sin(xz^2))}{\partial z}+\dfrac{\mathrm dh}{\mathrm dz}

2xye^{2xyz}+8xz\cos(xz^2)=2xye^{2xyz}+8xz\cos(xz^2)+\dfrac{\mathrm dh}{\mathrm dz}

\dfrac{\mathrm dh}{\mathrm dz}=0

\implies h(z)=C

for some constant C. So

f(x,y,z)=e^{2xyz}+4\sin(xz^2)+C

3 0
3 years ago
Identify the mistake:
Andrews [41]
Should have subtracted 3x
4 0
2 years ago
Read 2 more answers
Other questions:
  • What is a name for a symbol like +, -, ∙ or ÷?
    5·2 answers
  • 98 POINTS AND I WILL GIVE BRAINLIES PLZZZ HELP
    8·2 answers
  • 2+2+4= 8 x 12=<br> .........
    8·2 answers
  • Microsoft Excel might be useful when establishing relationships involving vertex-edge graphs.
    7·2 answers
  • What is the probability of getting tails 4 times in a row while flipping a coin?
    10·1 answer
  • Help me. Please due today
    6·1 answer
  • How would the frog hop to meet the following requirements?
    8·1 answer
  • Nick needs 75 yards of wire for a project. If the wire is only sold on spools which hold 6 feet of wire, how many spools will he
    9·1 answer
  • Franco se quedó en un hotel por 5 noches. La habitación del hotel cuesta $ 92 por noche. Tenía un cupón de $ 10 de su factura to
    11·1 answer
  • Which of the following functions represents an exponential decay with a 15% rate of change where A represents the initial value
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!