Answer:
Mass = 4.6 g
Explanation:
Given data:
Number of molecules of sucrose = 8.1 ×10²¹ molecules
Mass of sucrose = ?
Solution:
First of all we will calculate the number of moles by using Avogadro number.
1 mole × 8.1 ×10²¹ molecules / 6.022×10²³ molecules
1.35 × 10⁻² mol
Mass of sucrose:
Mass = number of moles × molar mass
Molar mass = 342.3 g/mol
Mass = 1.35 × 10⁻² mol ×342.3 g/mol
Mass = 462.1 × 10⁻² g
Mass = 4.6 g
Static Friction, Sliding Friction, Rolling Friction, and finally Fluid Friction.
Answer:
Throughout the explanation section, the reason behind the given statement is described.
Explanation:
- The chemicals thus produced were indeed opposite or separate from the reaction mixture, this same reaction wouldn’t change when it's more balanced than some of the reactants.
- Another reason is that the development of advanced organisms, as well as chemical alterations, is irreversible throughout nature cant undo the chemical modifications.
%Mass
Ar C = 12 g/mol, Mr C₄H₁₀ = 58 g/mol, Ar H = 1 g/mol

or

Answer:
24x10³
Explanation:
2CO₂(g) + 4H₂O(g) → 2CH₃OH(l) + 3O₂ (g)
The equilibrium constant for this reaction is:
Kc = ![\frac{[O_2]^3}{[CO_2]^2[H_2O]^4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BO_2%5D%5E3%7D%7B%5BCO_2%5D%5E2%5BH_2O%5D%5E4%7D)
The expression of [CH₃OH] is left out as it is a pure liquid.
Now we <u>convert the given masses of the relevant species into moles</u>, using their <em>respective molar masses</em>:
- CO₂ ⇒ 3.28 g ÷ 44 g/mol = 0.0745 mol CO₂
- H₂O ⇒ 3.86 g ÷ 18 g/mol = 0.214 mol H₂O
- O₂ ⇒ 2.80 g ÷ 32 g/mol = 0.0875 mol O₂
Then we calculate the concentrations:
- [CO₂] = 0.0745 mol / 7.5 L = 0.0099 M
- [H₂O] = 0.214 mol / 7.5 L = 0.0285 M
- [O₂] = 0.0875 mol / 7.5 L = 0.0117 M
Finally we <u>calculate Kc</u>:
- Kc =
= 24x10³