There are two <em>true</em> statements:
- When the function is composed with r, the <em>composite</em> function is V(t) = (1/48) · π · t⁶.
- V(r(6)) shows that the volume is 972π cubic inches after 6 seconds.
<h3>How to use composition between two function</h3>
Let be <em>f</em> and <em>g</em> two functions, there is a composition of <em>f</em> with respect to <em>g</em> when the domain of <em>f</em> is equal to the range of <em>g</em>. In this question, the <em>domain</em> variable of the function V(r) is replaced by substitution.
If we know that V(r) = (4/3) · π · r³ and r(t) = (1/4) · t², then the composite function is:
V(t) = (4/3) · π · [(1/4) · t²]³
V(t) = (4/3) · π · (1/64) · t⁶
V(t) = (1/48) · π · t⁶
There are two <em>true</em> statements:
- When the function is composed with r, the <em>composite</em> function is V(t) = (1/48) · π · t⁶.
- V(r(6)) shows that the volume is 972π cubic inches after 6 seconds.
To learn on composition between functions: brainly.com/question/12007574
#SPJ1
Answer:Solve equations by clearing the Denominators Find the least common denominator of all the fractions in the equation. Multiply both sides of the equation by that LCD. This clears the fractions.
Step-by-step explanation:Solve equations by clearing the Denominators Find the least common denominator of all the fractions in the equation. Multiply both sides of the equation by that LCD. This clears the fractions.
So, we know that a^2 + b^2 = c^2. Right? That is called the Pythagorean Theorem.
In this case. We can say that 39 is a, 40 is b, and x is c.
NOTE: It doesn't really matter whether 39 is a or b. a & b are just the two legs of the right triangle.
So, if we say that 39 is a, 40 is b, and x is c. We can plug it into the Pythagorean Theorem.
39^2 + 40^2 = x^2
I'll let you take it from there.
The answer is A. You can solve this by plugging the X values from the table into the equation and seeing if you end up with the right Y value.