If it is heated while it is being compressed or held inside a container as such, the pressure build up while in the container and the pressure can become so much that the container will burst.
Answer:
This phenomenon occurs because the door, being metal and leading to changes in temperature, undergoes proportional and morphological changes, metals face expansion and expansion in the presence of heat, called thermal expansion.
On the other hand, against the cold, thermal contraction is suffered, that is why its volume decreases, and it contracts.
Explanation:
The expansion phenomenon of the door is not linear, since it increases its volume in width and height, therefore simultaneously on the entire surface.
When an area or surface expands, it does so by increasing its dimensions in the same proportion. For example, a metal sheet increases its length and width, which means an increase in area. Area dilation differs from linear dilation in that it involves an increase in area.
The area expansion coefficient is the increase in area that a body of a certain substance experiences, with an area equal to unity, as its temperature rises one degree centigrade. This coefficient is represented by the Greek letter gamma.
Regarding shrinkage, a clear example of this is when a metal foundry or a weld shrinks, sometimes it is difficult to understand with examples like these (doors) because it is little noticeable by our eyes and the dimensional changes for our perspective. it is infima.
Answer:
(CH₃)₃COCH3₃ and (CH₃)₂CHOCH₂CH₃
Explanation:
Isomers are compounds which have the same molecular formula. Constitutional isomers have different connectivity; the atoms are connected in different ways.
1. (CH₃)₃COCH₃
2. (CH₃)₂CHOCH3₃
3. (CH₃)₂CHOCH₂CH₃
Molecules 1 and 3 have the same formula (C₅H₁₂O) and are isomers. Molecule 2 is not an isomer. From the structural formula, it is clear that Molecules 1 and 3 have different connectivity.
Since X is 1 g, therefore O must be 0.1 g. Therefore:
moles O = 0.1 g / (16 g / mol) = 0.00625 mol
We can see that for every 3 moles of O, there are 2 moles
of X, therefore:
moles X = 0.00625 mol O (3 moles X / 2 moles O) =
0.009375 mol
Molar mass X = 1 g / 0.009375 mol
<span>Molar mass X = 106.67 g/mol</span>
Answer:
Relative and average atomic mass both describe properties of an element related to its different isotopes.
Explanation:However, relative atomic mass is a standardized number that's assumed to be correct under most circumstances, while average atomic mass is only true for a specific sample.