Answer:
B.) An atom of arsenic has one more valence electron and more electron shells than an atom of silicon, so the conductivity decreases because the arsenic atom loses the electron.
Explanation:
Silicon is located in the 3rd row and 14th column in the periodic table. Arsenic is located in the 4th row and 15th column in the periodic table. This means that arsenic has one more valence electron than silicon. Since arsenic is located one row down from silicon, its valence electrons occupy higher energy orbitals.
Silicon maintains a crystal-like lattice structure. Each silicon atom is covalently connected to assume this shape. When silicon gains one extra electron from arsenic, it experiences n-type doping. This new electron is not tightly bound in the lattice structure. This allows it to move more freely and conduct more electricity. This can also be explained using band gaps. Silicon, which previously had an empty conduction band, now has one electron in this band. This lowers the band gap between the conduction and valence bands and increases conductivity.
Answer:
The answer to your question is below
Explanation:
11. Alkali metals
12. Halogens
13. Transition metals
14. Halogens
15. Noble gases
16. Alkaline earth metals
17. Transition metals
18. Alkaline earth metals
19. Transition metals
20. Alkali metals
21.- Periods
22.- Calcium
23.- Iodine, I
24.- A. atomic number
Answer:
B
Explanation:
Heating a piece of iron until it glows.