Answer: The fraction 301/900
Note: I'm assuming the 4's continue on forever
==============================================
Work Shown:
I'm going to assume that the 4s go on forever. I'll represent this with three dots after the last 4 like so
0.334444...
Now let x = 0.334444...
Multiply both sides by 100
x = 0.334444...
100x = 100*(0.334444...)
100x = 33.444444...
And repeat with 1000
x = 0.334444...
1000x = 1000*(0.334444...)
1000x = 334.444444...
Then subtract and solve for x. Notice how the decimal parts line up and cancel
1000x-100x = (334.444444...) - (33.444444...)
1000x-100x = (334+0.444444...) - (33+0.444444...)
1000x-100x = 334+0.444444... - 33 - 0.444444...
1000x-100x = (334-33)+(0.444444... - 0.444444...)
900x = 334 - 33
900x = 301
x = 301/900
Answer:
x^2 + 14x + 40.
Step-by-step explanation:
(x+4) (x+10)
= x(x + 10) + 4(x + 10) ( By the Distributive Law)
= x^2 + 10x + 4x + 40
= x^2 + 14x + 40.
Answer:
<h2>(f · g)(x) is odd</h2><h2>(g · g)(x) is even</h2>
Step-by-step explanation:
If f(x) is even, then f(-x) = f(x).
If g(x) is odd, then g(-x) = -g(x).
(f · g)(x) = f(x) · g(x)
Check:
(f · g)(-x) = f(-x) · g(-x) = f(x) · [-g(x)] = -[f(x) · g(x)] = -(f · g)(x)
(f · g)(-x) = -(f · g)(x) - odd
(g · g)(x) = g(x) · g(x)
Check:
(g · g)(-x) = g(-x) · g(-x) = [-g(x)] · [-g(x)] = g(x) · g(x) = (g · g)(x)
(g · g)(-x) = (g · g)(x) - even
Answer:
<h2>
x = 19</h2><h2>
</h2>
Step-by-step explanation:
|<----------------- 71 ----------------------->|
E-----------------------F---------------------G
2x + 13 20
find: x
EF + FG = DG
2x + 13 + 20 = 71
2x = 71 - 20 - 13
x = 38 / 2
x = 19