1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
3 years ago
5

26. Define a relation ∼ ∼ on R 2 R2 by stating that ( a , b ) ∼ ( c , d ) (a,b)∼(c,d) if and only if a 2 + b 2 ≤ c 2 + d 2 . a2+

b2≤c2+d2. Show that ∼ ∼ is reflexive and transitive but not symmetric.
Mathematics
1 answer:
Tresset [83]3 years ago
3 0

Answer:

~ is reflexive.

~ is asymmetric.

~ is transitive.

Step-by-step explanation:

~ is reflexive:

i.e., to prove $ \forall (a, b) \in \mathbb{R}^2 $, $ (a, b) R(a, b) $.

That is, every element in the domain is related to itself.

The given relation is $\sim: (a,b) \sim (c, d) \iff a^2 + b^2 \leq c^2 + d^2$

Reflexive:

$ (a, b) \sim (a, b) $ since $ a^2 + b^2 = a^2 + b^2 $

This is true for any pair of numbers in $ \mathbb{R}^2 $. So, $ \sim $ is reflexive.

Symmetry:

$ \sim $ is symmetry iff whenever $ (a, b) \sim (c, d) $ then $  (c, d) \sim (a, b) $.

Consider the following counter - example.

Let (a, b) = (2, 3) and (c, d) = (6, 3)

$ a^2 + b^2 = 2^2 + 3^2 = 4 + 9 = 13 $

$ c^2 + d^2 = 6^2 + 3^2 = 36 + 9 = 42 $

Hence, $ (a, b) \sim (c, d) $ since $ a^2 + b^2 \leq c^2 + d^2 $

Note that $ c^2 + d^2 \nleq a^2 + b^2 $

Hence, the given relation is not symmetric.

Transitive:

$ \sim $ is transitive iff whenever $ (a, b) \sim (c, d) \hspace{2mm} \& \hspace{2mm} (c, d) \sim (e, f) $ then $ (a, b) \sim (e, f) $

To prove transitivity let us assume $ (a, b) \sim (c, d) $ and $ (c, d) \sim (e, f) $.

We have to show $ (a, b) \sim (e, f) $

Since $ (a, b) \sim (c, d) $ we have: $ a^2 + b^2 \leq c^2 + d^2 $

Since $ (c, d) \sim (e, f) $ we have: $ c^2 + d^2 \leq e^2 + f^2 $

Combining both the inequalities we get:

$ a^2 + b^2 \leq c^2 + d^2 \leq e^2 + f^2 $

Therefore, we get:  $ a^2 + b^2 \leq e^2 + f^2 $

Therefore, $ \sim $ is transitive.

Hence, proved.

You might be interested in
I need help for question 17 in my big ideas math homework, it says "Use the figure to find the measures of the numbered angles."
Dafna1 [17]

Answer:

can you show a pic tell me in the comments

Step-by-step explanation:

7 0
2 years ago
Could anyone help me out with this?
Mama L [17]

Answer: they are abt the same its all abt percentage now- Pitcher A

Step-by-step explanation: more water lessens the strength

7 0
2 years ago
Factor -28x2-12x , thank you all for helping me answer these questions.
goldenfox [79]
<span>-28x²-12x = -4x(7x+3) the first one is answer</span>
6 0
2 years ago
FIRST CORRECT ANSWER GETS BRAINLIEST AND 50 POINTS.
AnnyKZ [126]

Answer:

A) 5^3*5^{-4}=5^{3-4}=5^{-1}=\frac{1}{5} (Yes. It has a value between zero and one.)

B) \frac{3^5}{3^{-6}}=3^{5-\left(-6\right)}=3^{5+6}=3^{11}=177147 (No. It does not have a value between zero and one.)

C) \left(\frac{1}{4}\right)^3* \left(\frac{1}{4}\right)^2=\left(\frac{1}{4}\right)^{3+2}=\left(\frac{1}{4}\right)^5=\frac{1^5}{4^5}=\frac{1}{1024}. (Yes. It has a value between zero and one.)

D) \frac{\left(-7\right)^5}{\left(-7\right)^7}=\left(-7\right)^{5-7}=\left(-7\right)^{-2}=\frac{1}{\left(-7\right)^2}=\frac{1}{49} (Yes. It has a value between zero and one.)

4 0
3 years ago
Read 2 more answers
A rectangular mat has an area of 7/12 in2. The length of the mat is 5/6 in. What is the width of the mat
Pie

Step-by-step explanation:

  1. <em>h</em><em>s</em><em>j</em><em>k</em><em>f</em><em><u>h</u></em><em><u>z</u></em><em><u>j</u></em><em><u>k</u></em><em><u>z</u></em><em><u>g</u></em><em><u>s</u></em><em><u>g</u></em><em><u>s</u></em><em><u>j</u></em><em><u>s</u></em><em><u>j</u></em><em><u>d</u></em><em><u>h</u></em><em><u>d</u></em><em><u>u</u></em><em><u>s</u></em><em><u>j</u></em><em><u>d</u></em><em><u>h</u></em><em><u>z</u></em><em><u>h</u></em><em><u>d</u></em><em><u>j</u></em><em><u>x</u></em>
  2. <em><u>h</u></em><em><u>d</u></em><em><u>i</u></em><em><u>d</u></em><em><u>i</u></em><em><u>d</u></em>
  3. <em><u>b</u></em><em><u>x</u></em><em><u>j</u></em><em><u>x</u></em><em><u>j</u></em><em><u>x</u></em><em><u>j</u></em>
  4. <em><u>j</u></em><em><u>s</u></em><em><u>j</u></em><em><u>c</u></em><em><u>j</u></em><em><u>x</u></em>
  5. <em><u>b</u></em><em><u>d</u></em><em><u>h</u></em><em><u>x</u></em><em><u>j</u></em><em><u>d</u></em><em><u>k</u></em><em><u>d</u></em><em><u>f</u></em>
  6. <em><u>h</u></em><em><u>s</u></em><em><u>j</u></em><em><u>d</u></em>
8 0
3 years ago
Other questions:
  • A soccer ball is kicked toward the goal. The height of the ball is modeled by the function h(t) = −16t2 + 48t where t equals the
    9·2 answers
  • Must a decimal divisor and a decimal dividend have the same number of decimal places in order to have a whole number quotient? W
    7·1 answer
  • How do you find the exterior angle of a polygon?
    14·1 answer
  • A car travels 2.83 km in the x-direction, then turns left 65.3 ◦ to the original direction and travels an additional distance of
    13·1 answer
  • 37.5% 1/3 25% and 3/10 least to greatest
    6·1 answer
  • If an elephant could eat 2,500 pounds of food in 10 days how much can it eat in 1,000 days
    12·1 answer
  • Pls help it due in a hour and show workings...
    10·1 answer
  • Practice multiplying numbers by powers of 10.
    10·1 answer
  • Need help asap show your work
    5·1 answer
  • Janet plans to save $22.50 each week until she has enough to buy a $180 bicycle. After how many weeks will she have enough money
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!