1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vagabundo [1.1K]
3 years ago
11

A bike ramp is shown in the figure. What is theta, the bike ramp's angle of elevation? Round your answer to the nearest degree.

Enter your answer in the box.

Mathematics
2 answers:
AysviL [449]3 years ago
3 0

Answer:

Ф = 14° ⇒ to the nearest degree

Step-by-step explanation:

* Lets revise the trigonometry functions

- Assume that we have a right triangle ABC

∵ m∠B = 90°

∴ AC is the hypotenuse ⇒ opposite to the right angle

∴ AB and BC are the legs of the right angles

- Let angle ACB called Ф

∵ sinФ = opposite/hypotenuse

∴ sinФ = AB/AC

∵ cosФ = adjacent/hypotenuse

∴ cosФ = BC/AC

∵ tanФ = opposite/adjacent

∴ tanФ = AB/BC

* Now lets solve the problem

- We will consider the bike ramp is the ΔABC

∵ AB = 1.5 feet

∵ ∠ACB is Ф

∵ The length of the ramp is the hypotenuse

∴ AC = 6 feet

- W have the length of the opposite to Ф and the hypotenuse

∴ We will chose the sin function

∵ sinФ = AB/AC

∴ sinФ = 1.5/6 ⇒ use the inverse of sin to find Ф

∴ Ф = sin^-1 (1.5/6) = 14.47 ≅ 14° ⇒ to the nearest degree

taurus [48]3 years ago
3 0

Answer:

14°

Step-by-step explanation:

Looking at the triangle with green border,

with respect to the angle \theta, the side 1.5 ft is "opposite" and the side 6 ft is "hypotenuse" of the triangle.

<em>Which trigonometric ratio relates opposite with hypotenuse? It is sine. Thus we can write:</em>

<em />

Sin\theta=\frac{opposite}{hypotenuse}=\frac{1.5}{6}=0.25\\Sin\theta=0.25\\\theta=Sin^{-1}(0.25)=14.48

Hence, the angle is 14.48°

rounded to nearest degree, it is 14°

You might be interested in
On a single set of axes, sketch a picture of the graphs of the following four equations: y = −x+ √ 2, y = −x− √ 2, y = x+ √ 2, a
Artist 52 [7]

Answer:

( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 ),  ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

Step-by-step explanation:

Given:

- Four functions to construct a diamond:

                y = −x+ √ 2,  y = −x− √ 2,  y = x+ √ 2, and y = x − √ 2.

Find:

a)Show that the unit circle sits inside this diamond tangentially; i.e. show that the unit circle intersects each of the four lines exactly once.

b)Find the intersection points between the unit circle and each of the four lines.

(c) Construct a diamond shaped region in which the circle of radius 1 centered at (−2, − 1) sits tangentially. Use the techniques of this section to help.

Solution:

- For first part see the attachment.

- The equation of the unit circle is given as follows:

                                      x^2 + y^2 = 1

- To determine points of intersection we have to solve each given function of y with unit circle equation for set of points of intersection:

                                For:  y = −x+ √ 2 , x - √ 2

                                And: x^2 + y^2 = 1

                                x^2 + (+/- * (x - √ 2))^2 = 1

                                x^2 + (x - √ 2)^2 = 1

                                2x^2 -2√ 2*x + 2 = 1

                                2x^2 -2√ 2*x + 1 = 0

                                 2[ x^2 - √ 2] + 1 = 0

Complete sqr:         (1 - 1/√ 2)^2 = 0

                                 x = 1/√ 2 , x = 1/√ 2                                          

                                 y = -1/√ 2 + √ 2 = 1/√ 2

                                 y = 1/√ 2 - √ 2 = - 1/√ 2

Points are:                ( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 )

- Using vertical symmetry of unit circle we can also evaluate other intersection points by intuition:

                                x = - 1/√ 2

                                 y = 1/√ 2 , -1/√ 2

Points are:              ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

- To determine the function for the rhombus region that would be tangential to unit circle with center at ( - 2 , - 1 ):

- To shift our unit circle from origin to ( - 2 , - 1 ) i.e two units left and 1 unit down.

- For shifts we use the following substitutions:

                           x = x + 2  ....... 2 units of left shift

                           y = y + 1 .......... 1 unit of down shift

- Now substitute the above shifting expression in all for functions we have:

                          y = −x+ √ 2 ----->  y + 1 = - ( x + 2 ) + √ 2

                          y = −x− √ 2 ----->  y + 1 = - ( x + 2 ) - √ 2

                          y = x- √ 2 ------->  y + 1 = ( x + 2 ) - √ 2

                          y = x+ √ 2 ------> y + 1 = ( x + 2 ) + √ 2

                          x^2 + y^2 = 1 ----->  ( x + 2 )^2 + ( y + 1)^2 = 1

- The following diamond shape graph would have the 4 functions as:

             y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

- See attachment for the new sketch.            

7 0
3 years ago
How do you say 876543 in word form
Valentin [98]
Eight hundred seventy six thousand five hundred forty three.
7 0
3 years ago
Read 2 more answers
Can anyone give me the answer for this one<br> a²(b²-c²)+b²(c²-a²)+c²(a²-b²) Simplify it
Mice21 [21]

Answer:

After Multiplying them.

we get 0 as an answer.

8 0
3 years ago
Let v be a subspace ofrnand v1,v2, ...,vma set of vectors in v . suppose every vector in v may beexpressed as a linear combinati
viva [34]
D. v1, v2,..., vm spans v.
Format your questions better next time.
3 0
4 years ago
Consider the population of a small town that grows according to the explicit rule:
strojnjashka [21]

Answer:

45595

Step-by-step explanation:

plug in 7 for n and solve

This is the population 7 years after 2002(2009)

8 0
3 years ago
Other questions:
  • A market survey shows that half the owners of Sorey State Boogie Boards became disenchanted with the product and switched to C&a
    13·1 answer
  • What is the area of the pool and the area of the pool and the walkway? Show your work.
    6·1 answer
  • The blue are the two boards that you need to use.
    8·1 answer
  • A professor's son, having made the wise decision to drop out of college, has been finding his way in life taking one job or anot
    6·2 answers
  • Joey and Harper are making fruit smoothies. They each squeeze oranges. Joey is able to squeeze 2 1/8 cups of orange juice and Ha
    11·1 answer
  • Please do all these questions for me while i work on more work
    8·1 answer
  • Which shows the expression below simplified?
    15·1 answer
  • PLEASE HELP A. S. A. P.
    9·1 answer
  • Can someone please help me with these questions ( show work plz)​
    12·1 answer
  • A pizza shop wants to determine how often it delivers to three different areas of a city. The table shows the areas from a rando
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!