Answer:
a) 141.6m
b) 8.4m/s
Explanation:
a) to find the total displacement you use the following formula for each trajectory. Next you sum the results:

hence, the total distance is 141.6m
b) the mean velocity of the total trajectory is given by:

hence, the mean velocity is 8.4 m/s
Answer:
given,
mass of the skier = 70.1 Kg
angle with horizontal, θ = 8.6°
magnitude of the force,F = ?
a) Applying newton's second law
velocity is constant, a = 0



b) now, when acceleration, a = 0.135 m/s²
velocity is constant, a = 0.135 m/s₂



Explanation:
It is given that,
Mass of person, m = 70 kg
Radius of merry go round, r = 2.9 m
The moment of inertia, 
Initial angular velocity of the platform, 
Part A,
Let
is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

Here, 


Solving the above equation, we get the value as :

Part B,
The initial rotational kinetic energy is given by :



The final rotational kinetic energy is given by :



Hence, this is the required solution.
Answer:
"One calorie of heat is defined as the amount of heat needed to raise the temperature of one gram of water by one degree Celsius"
Hope this Helps!
Answer:
In D: 3J
Explanation:
Potential energy: Ep=mgh where m is the mass, h altitude.
In point A: h=20cm=0.2m
Epa=12=0.2×mg. Thus mg=12/0.2=60N
For point D: hd=5cm=0.05m
Epd=mg×0.05=60×0.05=3J