Answer:
3234.2 W
Explanation:
Since intensity I = Power/Area. The intensity of the light from the sun, I = power radiated by sun/area of sphere of radius, r = 1.5 × 10¹¹ m.
So, I = 3.9 10²⁶W/4π(1.5 × 10¹¹ m)² = 2.069 × 10³ W/m².
Now, the power radiated on the patch of area 0.570 m² at the equator is
P = Icos27/A = 2.069 × 10³ W/m² cos27/0.570 m² = 1843.49/0.570 = 3234.2 W
Answer:
Option D
The Coriolis effect works at right angles to the direction of airflow
Explanation:
At the equator, Coriolis effect is negligible, basically zero while it's strongest at the poles (to imply statement B is wrong). Moreover, Coriolis effect is affected by the speed of wind and it also affects the speed of wind since when the wind speed decreases, due to friction for example, the Coriolis effect is also reduces.
Answer: Valence electrons
Valence electrons are those that are in the outermost or superficial layer of the atom, which means they have the highest energy compared to those of the inner layers.
Because of their position, it is easier for these electrons to interact with other atoms of their own element as well as different elements. This is done through the process of forming bonds when being attracted by other atoms.
Answer:
A
Explanation:
The line(A) goes throughout the entire picture. So therefore choice A would be it's length.