Answer:
Electric potential energy at the negative terminal: 
Explanation:
When a particle with charge
travels across a potential difference
, then its change in electric potential energy is

In this problem, we know that:
The particle is an electron, so its charge is

We also know that the positive terminal is at potential

While the negative terminal is at potential

Therefore, the potential difference (final minus initial) is

So, the change in potential energy of the electron is

This means that the electron when it is at the negative terminal has
of energy more than when it is at the positive terminal.
Since the potential at the positive terminal is 0, this means that the electric potential energy of the electron at the negative end is

Answer: Chemical → Mechanical → Electrical → Radiant
Explanation:
First, the Hamster eats the carrot, then the hamster is getting chemical energy.
Now the hamster starts using his wheel, then he "transforms" the chemical energy into mechanical energy.
Now the mechanical energy is connected to a generator, this means that the mechanical energy (the rotation of the wheel) is being converted into electrical energy.
And we know that there is a light bulb powered by this electrical energy, then we have electrical energy being transformed into radiant energy.
Then the correct option is:
Chemical → Mechanical → Electrical → Radiant
S=56, u=0, v=33, a=?, t=3.4
v=u+at
33=3.4 a
a = 9.7m/s^2
Noble gases are not highly reactive
The large leaves help it survive as they serve as the<u> organ for photosynthesis.</u>
Explanation:
- Photosynthesis, the process by which green plants and certain other organisms transform light energy into chemical energy.
- During photosynthesis in green plants, light energy is captured and used to convert water, carbon dioxide, and minerals into oxygen and energy-rich organic compounds
- Leaves provide food and air to help a plant stay healthy and grow. Through photosynthesis, leaves turn light energy into food.
- Through pores, or stomata, leaves breathe in carbon dioxide and breathe out oxygen. Leaves also release excess water.
- Most leaves are broad and so have a large surface area allowing them to absorb more light
- A thin shape means a short distance for carbon dioxide to diffuse in and oxygen to diffuse out easily.
- The exchange of oxygen and carbon dioxide in the leaf occurs through pores called stomata.
- Normally stomata open when the light strikes the leaf in the morning and close during the night.