1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
crimeas [40]
3 years ago
14

A sound source A and a reflecting surface B move directly toward each other. Relative to the air, the speed of source A is 28.7

m/s, the speed of surface B is 62.2 m/s, and the speed of sound is 334 m/s. The source emits waves at frequency 1110 Hz as measured in the source frame. In the reflector frame, what are (a) the frequency and (b) the wavelength of the arriving sound waves? In the source frame, what are (c) the frequency and (d) the wavelength of the sound waves reflected back to the source?
Physics
1 answer:
aleksandrvk [35]3 years ago
8 0

(a) 1440.5 Hz

The general formula for the Doppler effect is

f'=(\frac{v+v_r}{v+v_s})f

where

f is the original frequency

f is the apparent frequency

v is the velocity of the wave

v_r is the velocity of the receiver (positive if the receiver is moving towards the source, negative otherwise)

v_s is the velocity of the source (positive if the source is moving away from the receiver, negative otherwise)

Here we have

f = 1110 Hz

v = 334 m/s

In the reflector frame (= on surface B), we have also

v_s = v_A = -28.7 m/s (surface A is the source, which is moving towards the receiver)

v_r = +62.2 m/s (surface B is the receiver, which is moving towards the source)

So, the frequency observed in the reflector frame is

f'=(\frac{334 m/s+62.2 m/s}{334 m/s-28.7 m/s})1110 Hz=1440.5 Hz

(b) 0.232 m

The wavelength of a wave is given by

\lambda=\frac{v}{f}

where

v is the speed of the wave

f is the frequency

In the reflector frame,

f = 1440.5 Hz

So the wavelength is

\lambda=\frac{334 m/s}{1440.5 Hz}=0.232 m

(c) 1481.2 Hz

Again, we can use the same formula

f'=(\frac{v+v_r}{v+v_s})f

In the source frame (= on surface A), we have

v_s = v_B = -62.2 m/s (surface B is now the source, since it reflects the wave, and it is moving towards the receiver)

v_r = +28.7 m/s (surface A is now the receiver, which is moving towards the source)

So, the frequency observed in the source frame is

f'=(\frac{334 m/s+28.7 m/s}{334 m/s-62.2 m/s})1110 Hz=1481.2 Hz

(d) 0.225 m

The wavelength of the wave is given by

\lambda=\frac{v}{f}

where in this case we have

v = 334 m/s

f = 1481.2 Hz is the apparent in the source frame

So the wavelength is

\lambda=\frac{334 m/s}{1481.2 Hz}=0.225 m

You might be interested in
A car is being driven at a rate of 60 ft/sec when the brakes are applied. The car decelerates at a constant rate of 19
Hunter-Best [27]

The car will take 300 m before it stops due to applying break.

<h3>What's the relation between initial velocity, final velocity, acceleration and distance?</h3>
  • As per Newton's equation of motion, V² - U² = 2aS
  • V= final velocity velocity of the object, U = initial velocity velocity of the object, a= acceleration, S = distance covered by the object
  • Here, U = 60 ft/sec, V = 0 m/s, a= -6 ft/sec²
  • So, 0² - 60² = 2×6× S

=> -3600 = -12S

=> S = 3600/12 = 300 m

Thus, we can conclude that the distance covered by the car is 300 m before it stopped.

Disclaimer: The question was given incomplete on the portal. Here is the complete question.

Question: A car is being driven at a rate of 60 ft/sec when the brakes are applied. The car decelerates at a constant rate of 6 ft/sec². How long will it take before the car stops?

Learn more about the Newton's equation of motion here:

brainly.com/question/8898885

#SPJ1

7 0
2 years ago
A homing pigeon starts from rest and accelerates uniformly at +4.00 m/s squared for 10.0 seconds. What is its velocity after the
zavuch27 [327]
'  +4 m/s² ' means that the pigeon's speed is  4 m/s greater every second.

Starting from zero speed, after 10 seconds, its speed is 

                           (10 x 4m/s)  =  40 m/s.

We can't say anything about its velocity, because we have
no information regarding the direction of its flight.
5 0
3 years ago
Two 110 kg bumper cars are moving toward each other in opposite directions. Car A is moving at 8 m/s and Car Z at –10 m/s when t
salantis [7]

Explanation:

Mass of bumper cars, m_1=m_2=110\ kg

Initial speed of car A, u_1=8\ m/s

Initial speed of car Z, u_2=-10\ m/s

Final speed of car A after the collision, v_1=-10\ m/s

We need to find the velocity of car Z after the collision. Let it is equal to v_2. Using the conservation of momentum as :

m_1u_1+m_2u_2=m_1v_1+m_2v_2

110\times 8+110\times (-10)=110\times (-10)+110v_2

v_2=\dfrac{-1320}{110}\ m/s

v_2=-12\ m/s

So, the velocity of car Z after the collision is (-12 m/s). Hence, this is the required solution.

5 0
3 years ago
What is the temperature of a 3.72 mm cube (e=0.288) that radiates 56.6 W?
blsea [12.9K]

Answer:

The temperature is 2541.799 K

Explanation:

The formula for black body radiation is given by the relation;

Q = eσAT⁴

Where:

Q = Rate of heat transfer 56.6

σ = Stefan-Boltzman constant = 5.67 × 10⁻⁸ W/(m²·k⁴)

A = Surface area of the cube = 6×(3.72 mm)² = 8.3 × 10⁻⁵ m²

e = emissivity = 0.288

T = Temperature

Therefore, we have;

T⁴ = Q/(e×σ×A) = 56.6/(5.67 × 10⁻⁸ × 8.3 × 10⁻⁵ × 0.288) = 4.174 × 10¹⁴ K⁴

T  =  2541.799 K

The temperature = 2541.799 K.

7 0
3 years ago
How efficient is a pulley system if it enables you to lift a 600.0 Newton engine 0.600 meters if you exerted 35.7 Newtons of for
muminat

Answer:

η = 0.882 = 88.2 %

Explanation:

The efficiency of the pulley system can be given as follows:

\eta = \frac{W_{out}}{W_{In}}\\\\

where,

η = efficiency of pulley system = ?

W_out = Output Work = (600 N)(0.6 m) = 360 J

W_in = Input Work = (35.7 N)(11.43 m) = 408.051 J

Therefore,

\eta = \frac{360\ J}{408.051\ J}

<u>η = 0.882 = 88.2 %</u>

4 0
3 years ago
Other questions:
  • A stone is dropped from a certain height, distance covered by it in one second is:
    6·1 answer
  • An early submersible craft for deep-sea exploration was raised and lowered by a cable from a ship. When the craft was stationary
    6·1 answer
  • When a ball is thrown up vertically, explain what happens and explain why final velocity is zero ​
    10·1 answer
  • 51.34
    12·1 answer
  • (d) the optimum pressure ratio of the cycle to maximize the net output power
    11·1 answer
  • The particles of a more dense substance are closer together
    14·2 answers
  • Which one do I press guys?
    9·1 answer
  • The answer plz quickkkk
    10·1 answer
  • Which of the device used for the process of measuring the heat reaction
    7·1 answer
  • Looking at the wave diagram which best describes the wave
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!